CS 498PS – Audio Computing Lab

Denoising

Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu

Overview

• How do we remove noise?

- Single-channel methods
 - Filtering, spectral subtraction
 - How to model noise

Measuring performance

NOISE!

- We don't like it!
 - Degrades intelligibility
 - Lowers sound quality
- An unfortunate fact of life
 - It is almost impossible to avoid noise
 - We need to be able to deal with it
- Denoising to the rescue!

Standard applications

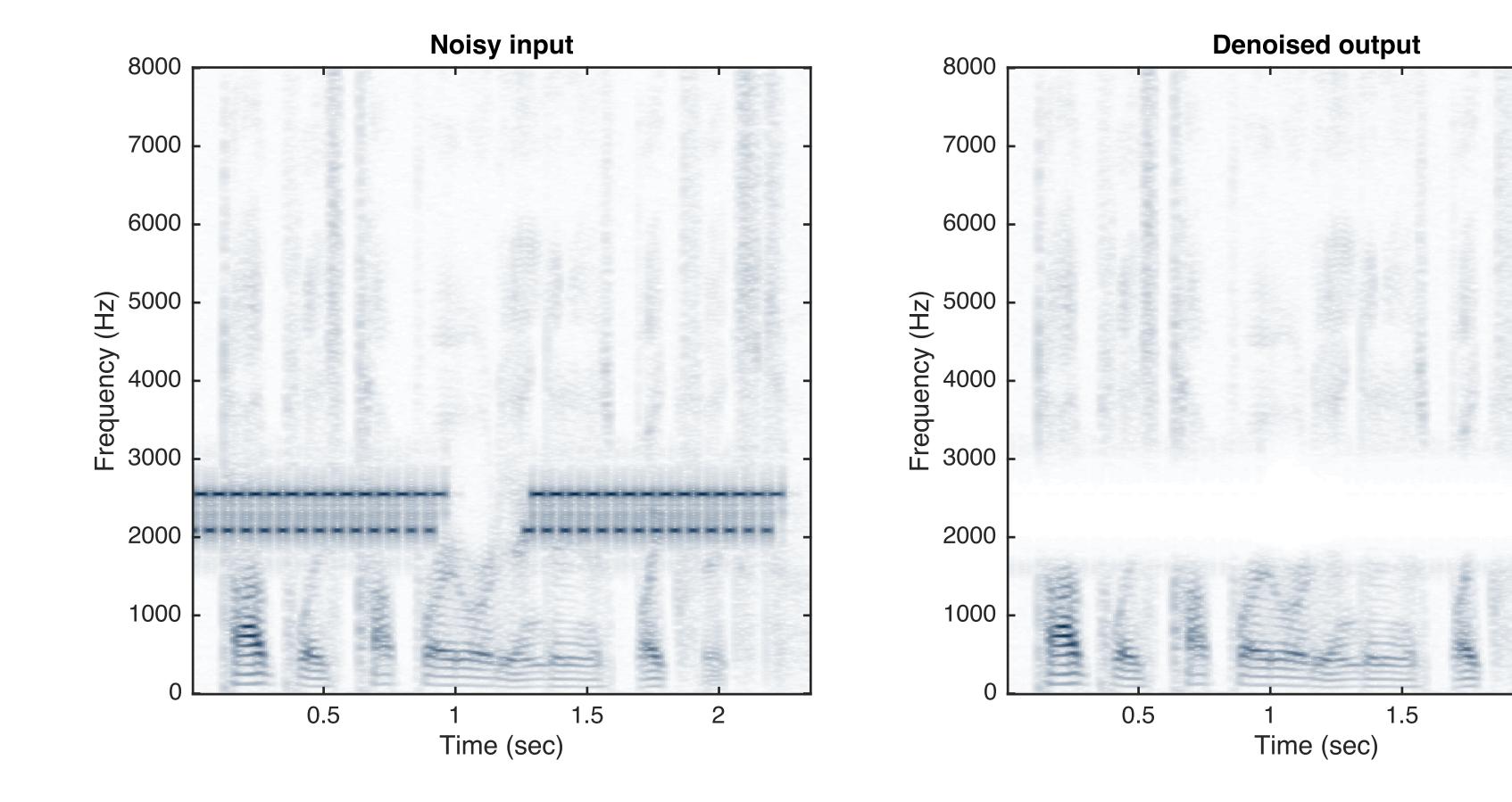
- Cell phones / voice communications
 - Removing non-speech elements (e.g. traffic)

- Data preprocessing
 - Preparing data for analysis (e.g. for speech recognition)

- Forensics
 - Improving intelligibility to help parsing

You've already done denoising

- Lab 1: Filters
 - Remove a cell phone ring using a bandpass filter

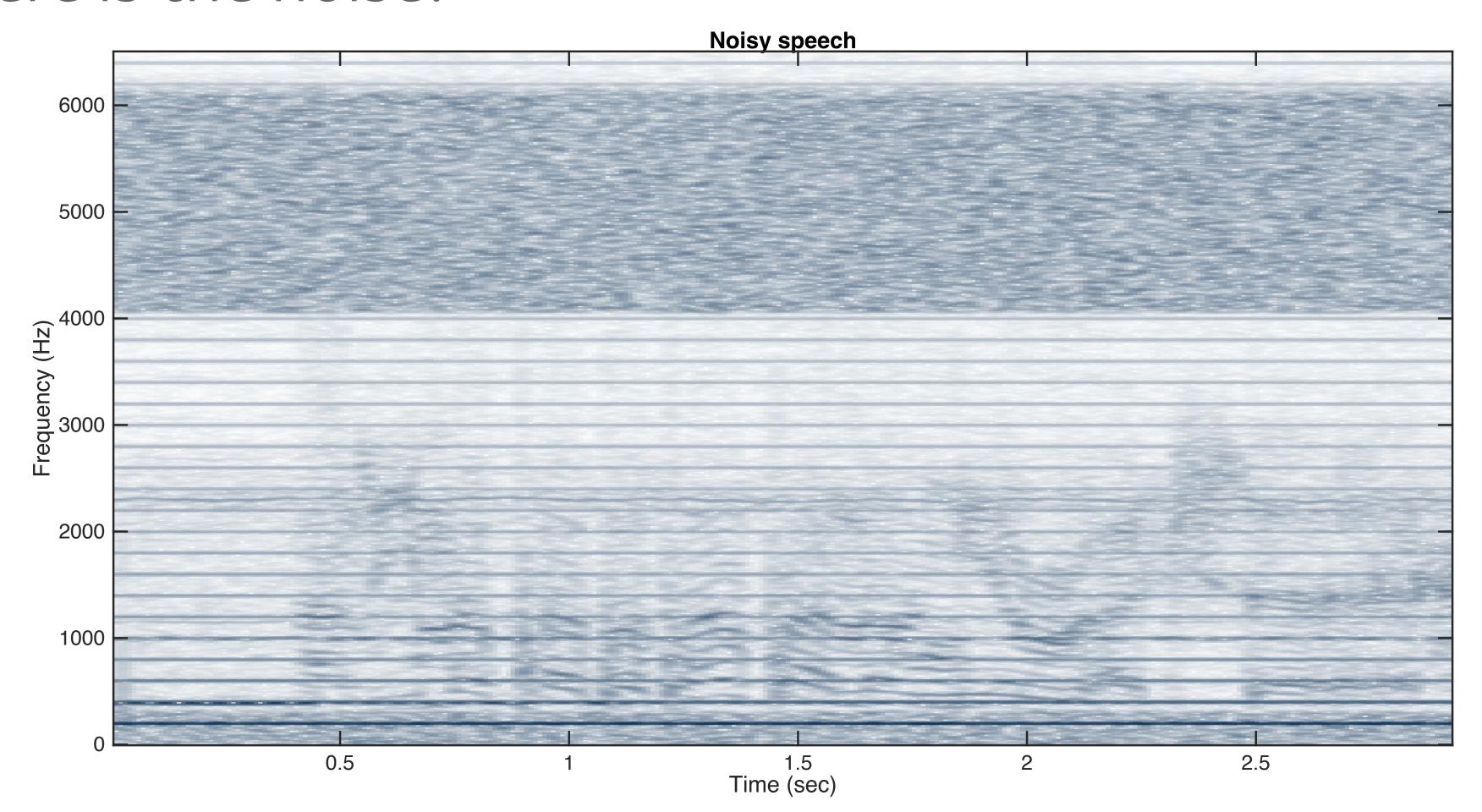


2

A noisy speech sample

Pilot chatter in a noisy cockpit

• Where is the noise?



How do we remove the noise?

Design a filter to remove unwanted parts

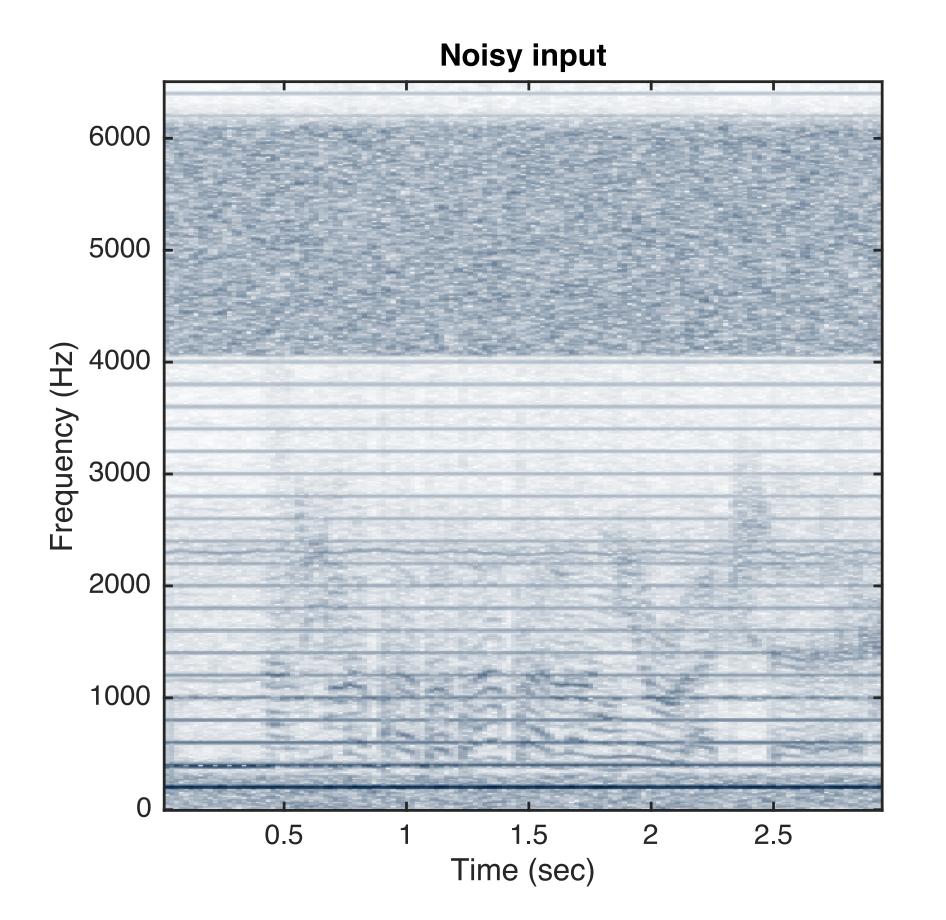
- This isn't a single frequency band though
 - We need to use a complicated filter shape

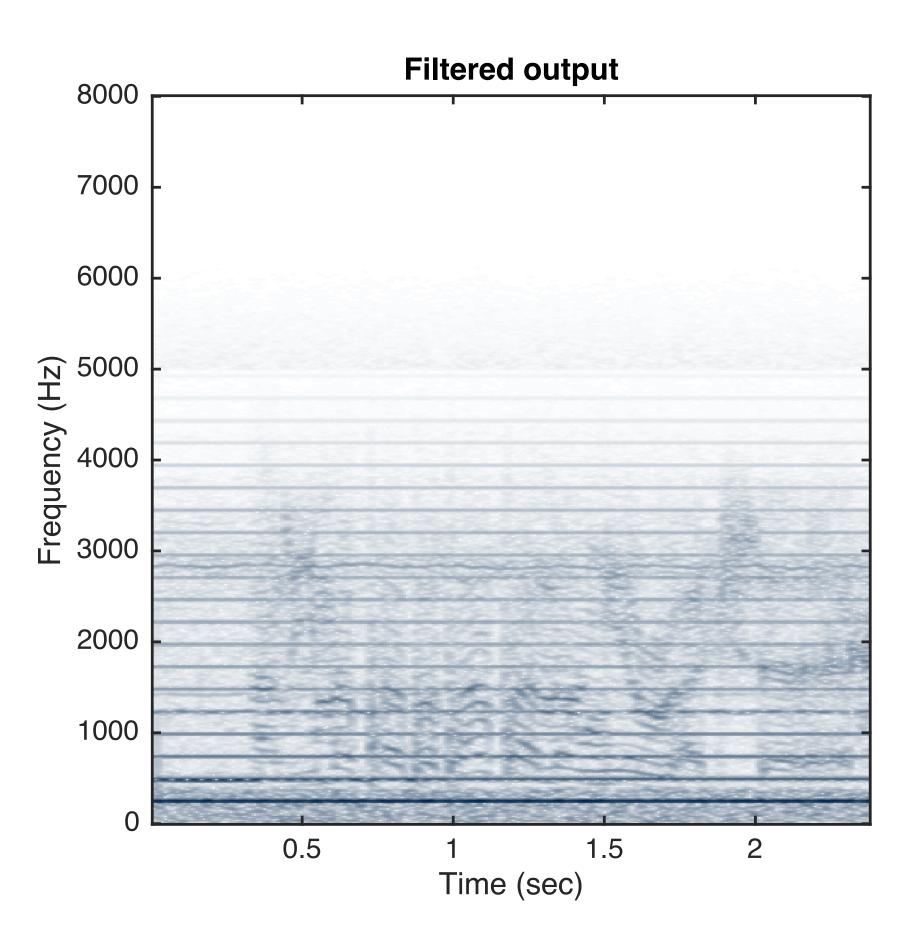
- Or we can use multiple filters in series
 - Each knocking down only one noisy band at a time

A piecewise approach

Remove the high frequency noise

Use a lowpass filter

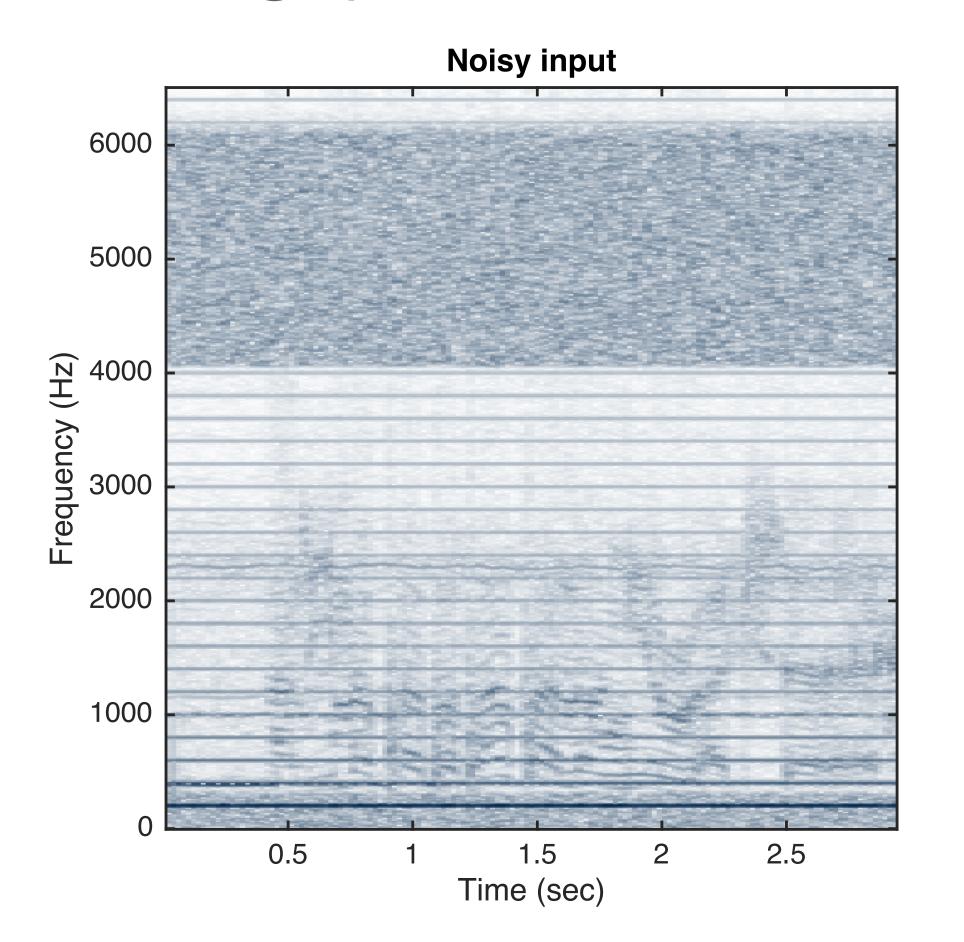


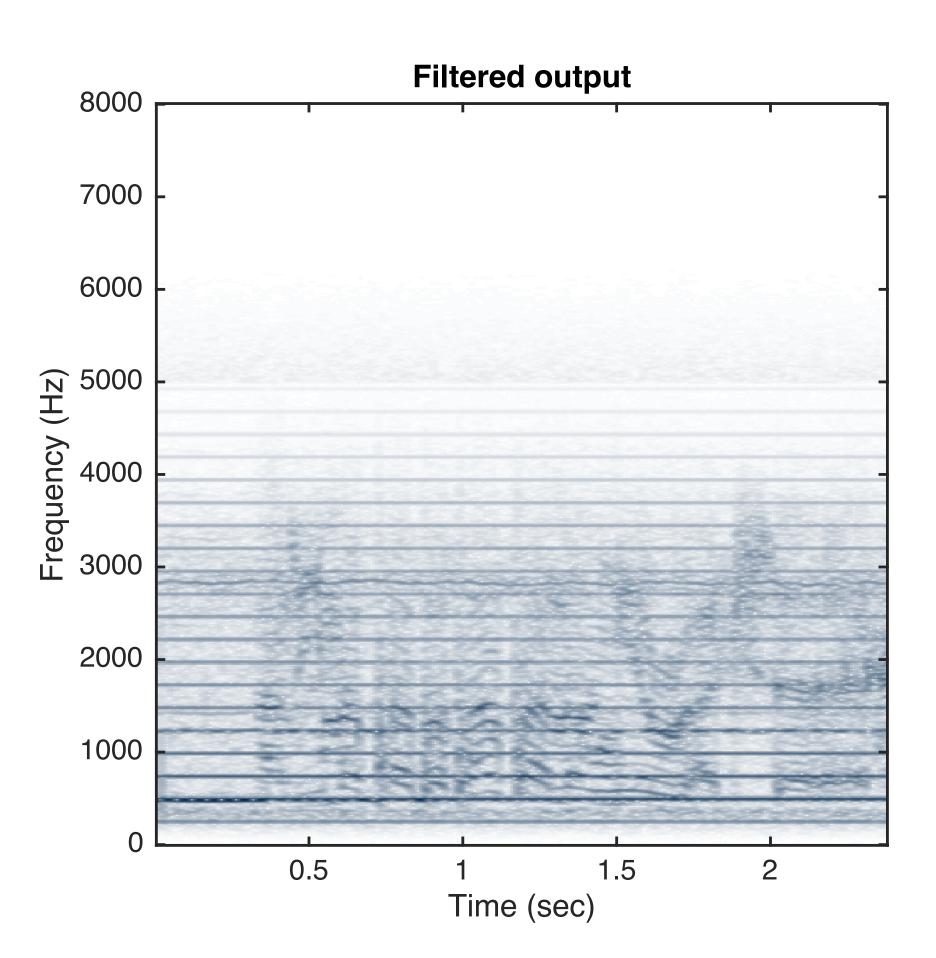


A piecewise approach

Remove the low frequency noise

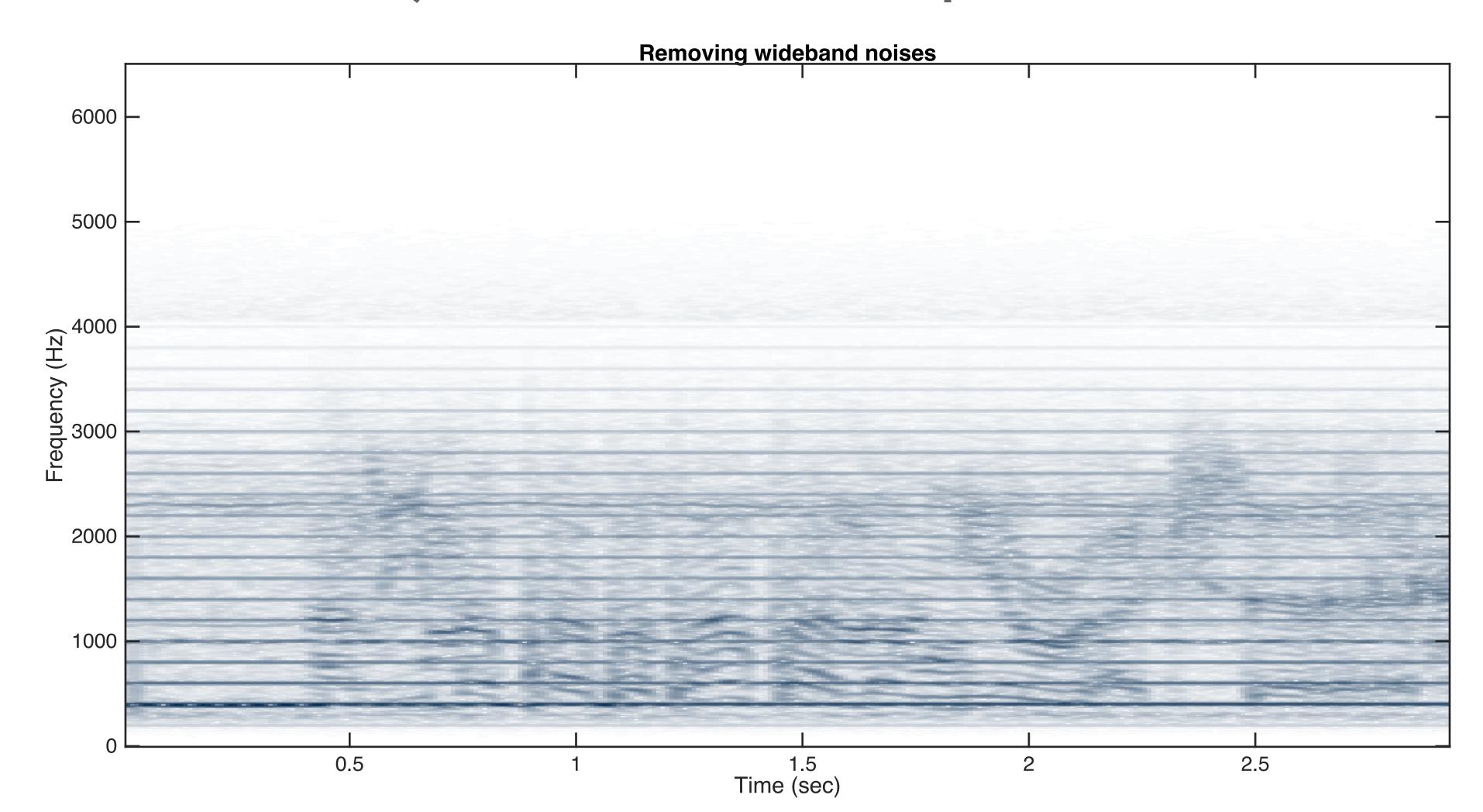
With a highpass filter





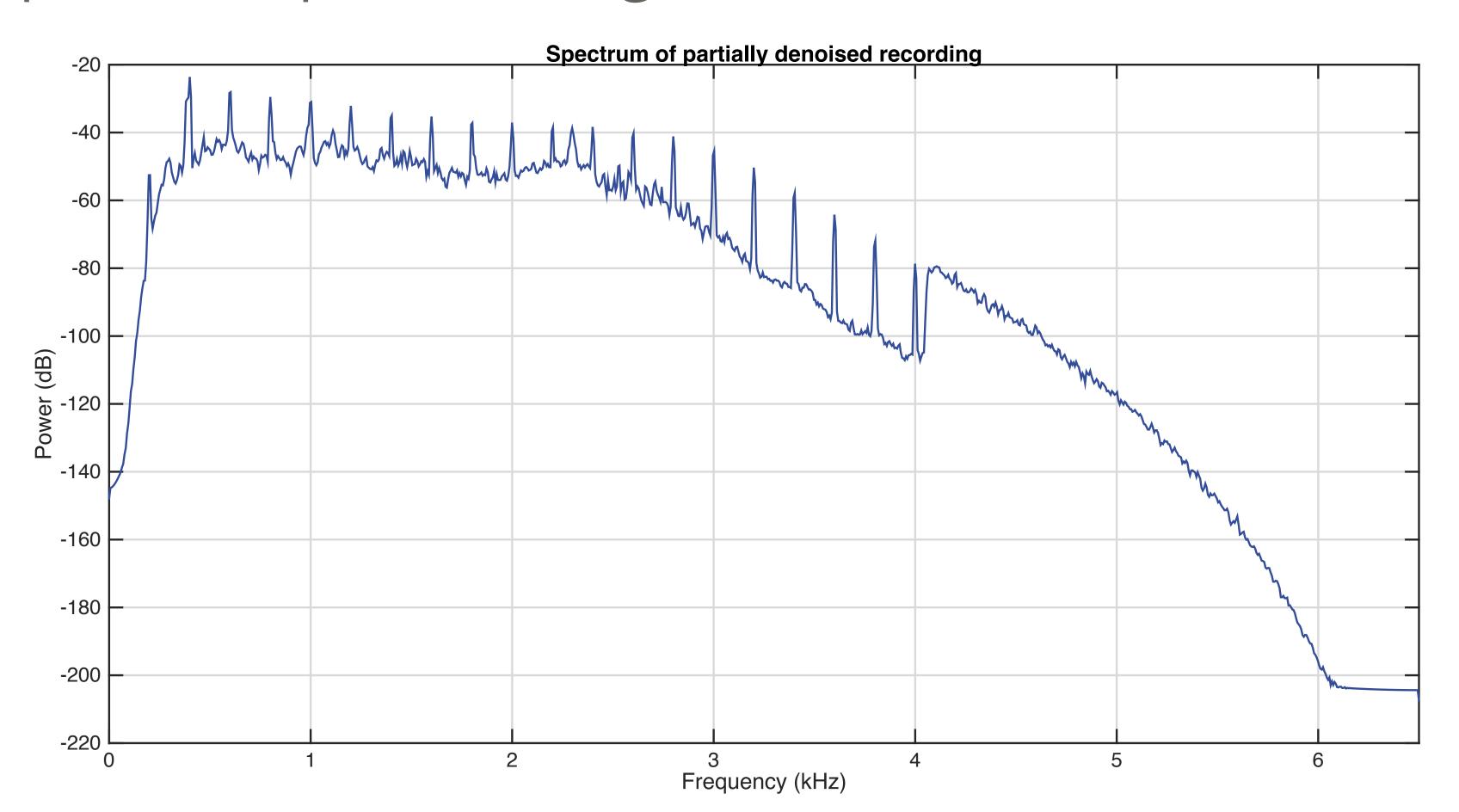
A little better now

We could have just used a bandpass filter



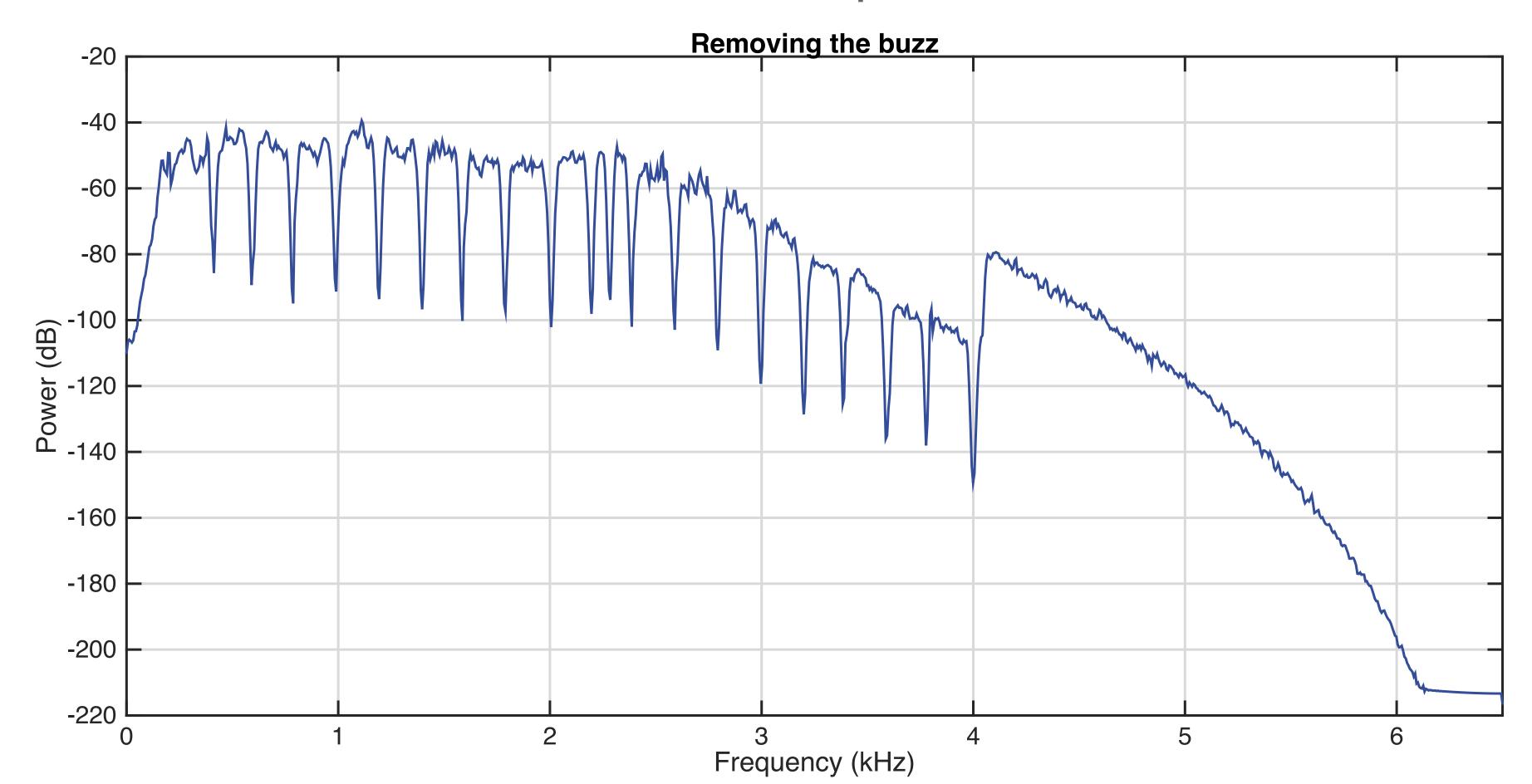
Removing the buzzing

- How do we get rid of that?
 - Multiple noise peaks at regular intervals



Piling on more filters

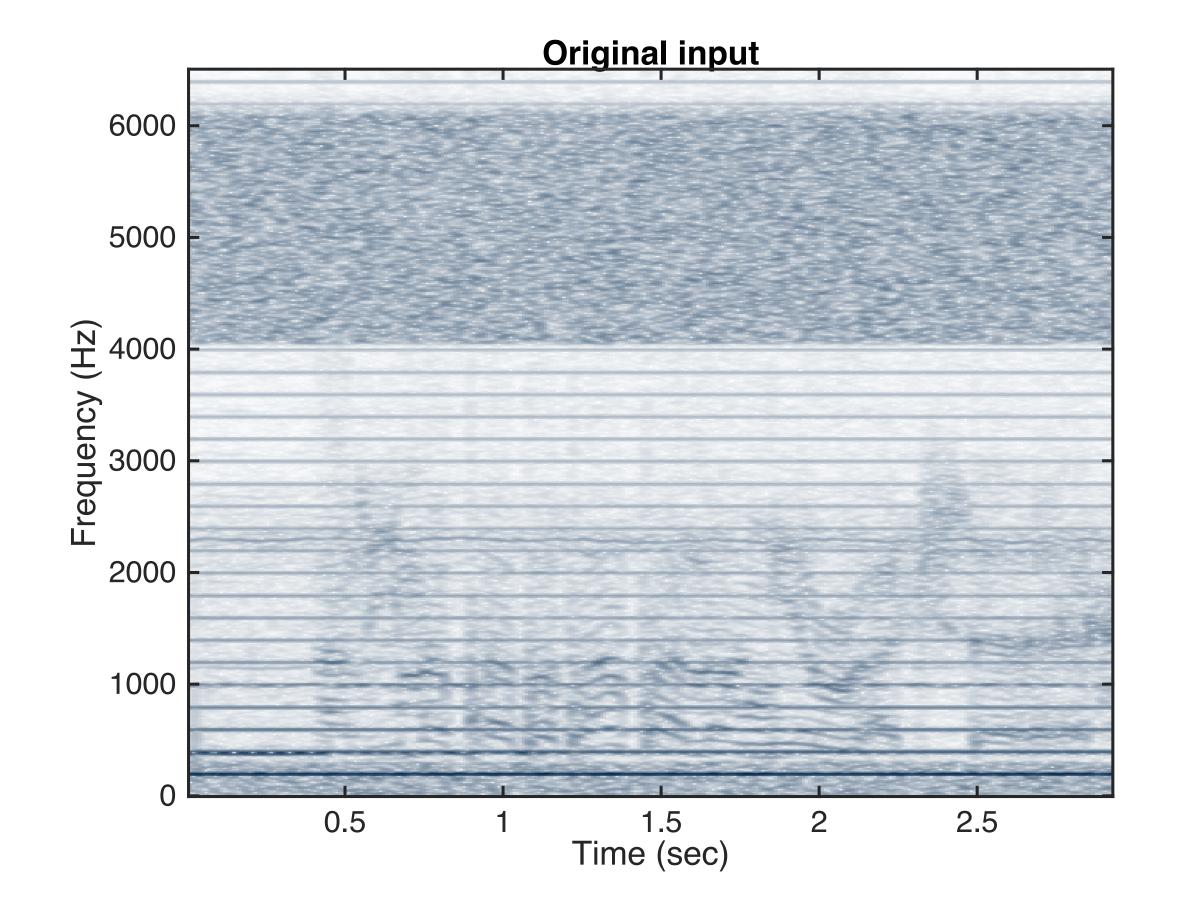
- Bank of bandstop filters to remove buzz
 - Center each filter on each noise peak

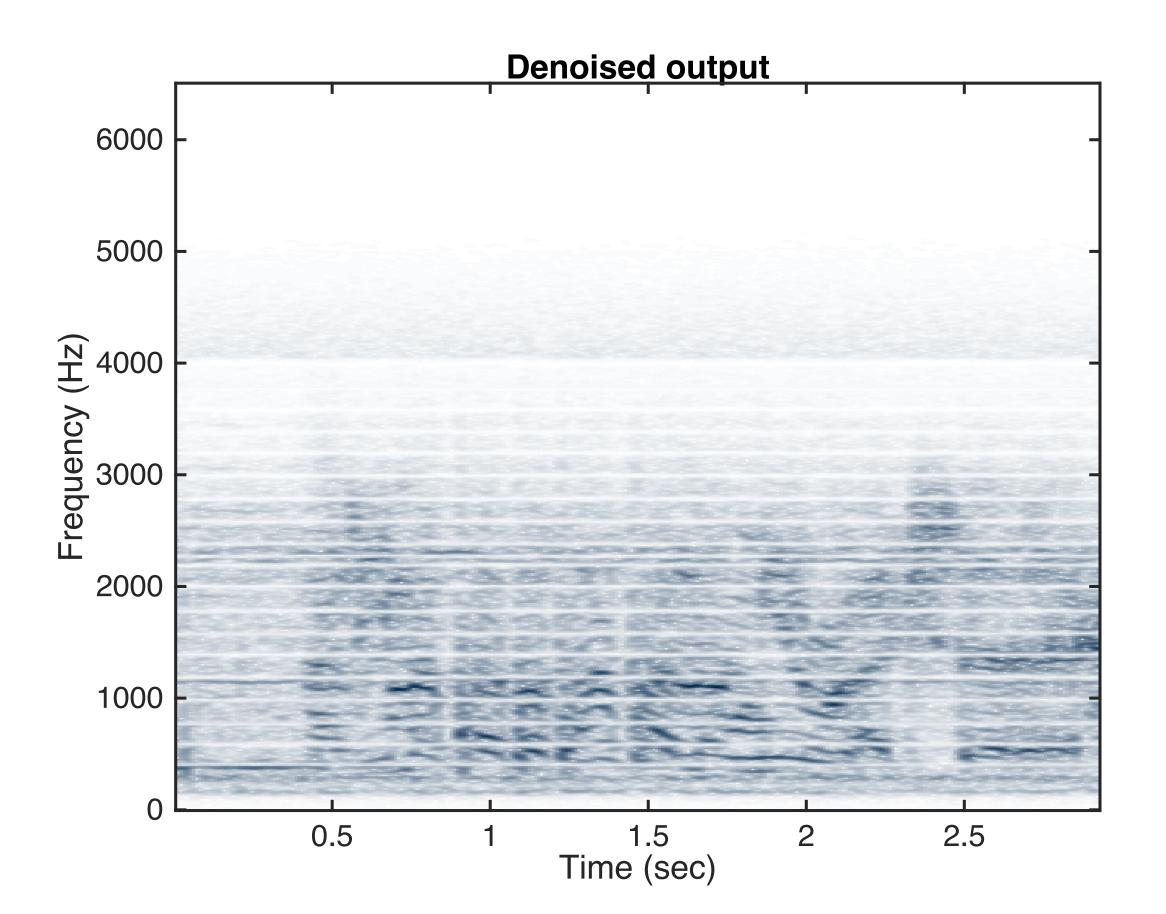


Final result

Noise elements are suppressed, speech is cleaner

• But we get some audible spectral notches (hollow sound)



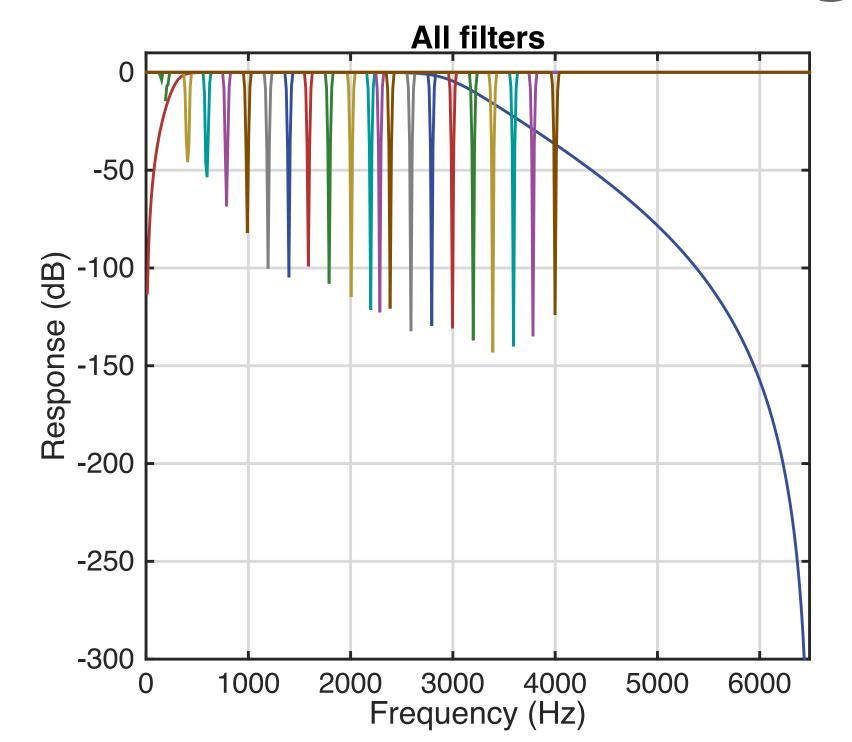


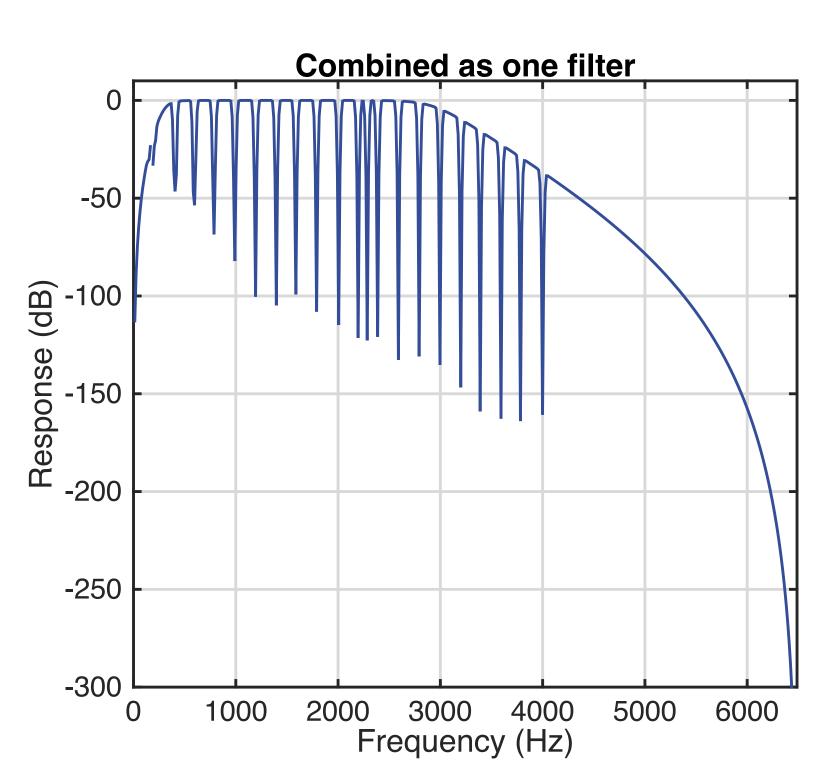
Overall filter

• The overall response is thus:

$$H[\omega] = H_{low}[\omega] \cdot H_{high}[\omega] \cdot H_{f_1}[\omega] \cdot H_{f_2}[\omega] \cdot \dots$$

With the final filter being:





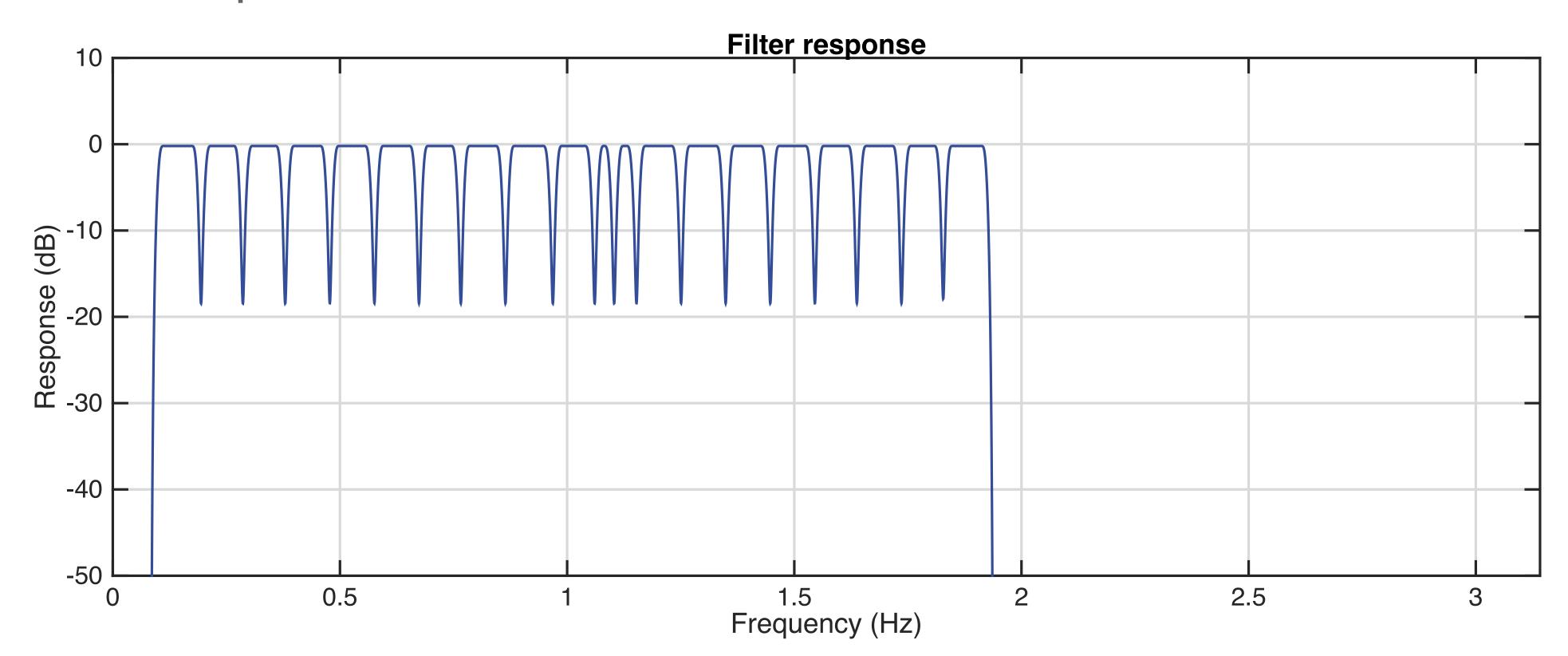
That was a lot of work!

Can we do this faster?

- Easy answer: we can design the filter in one go
 - E.g. with frequency sampling (firwin2)

Designing the filter

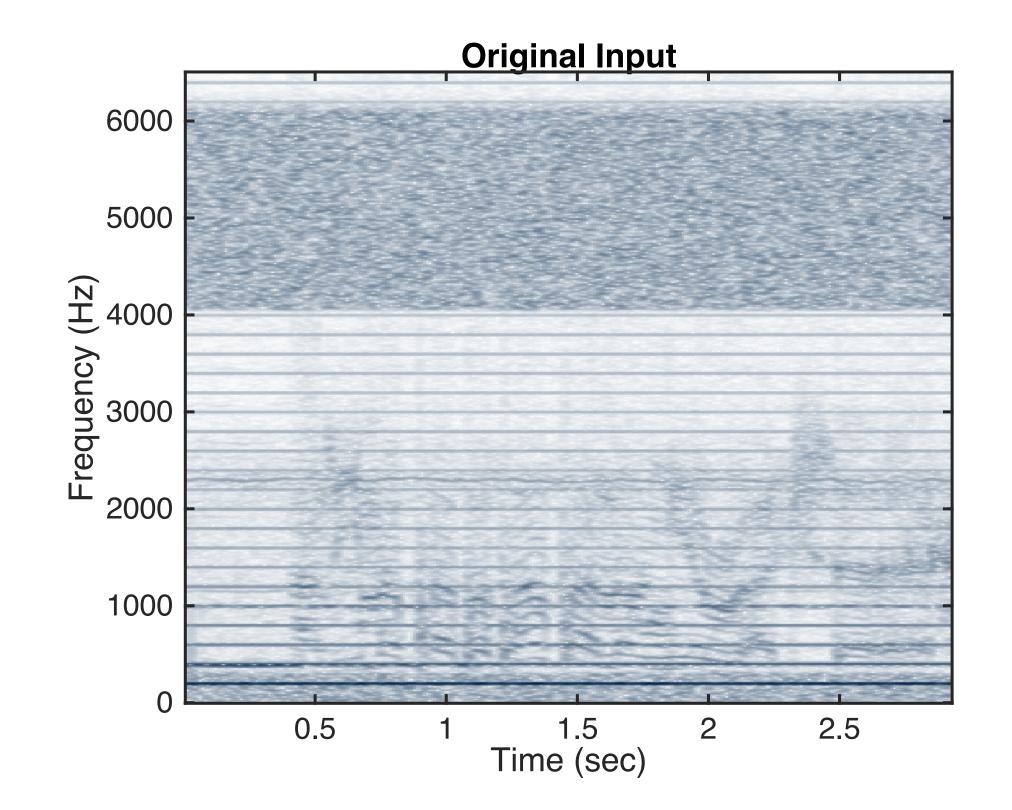
- Setup constraints explicitly
 - Zero response at high/low bands, and at the buzz nodes
 - Unit response otherwise

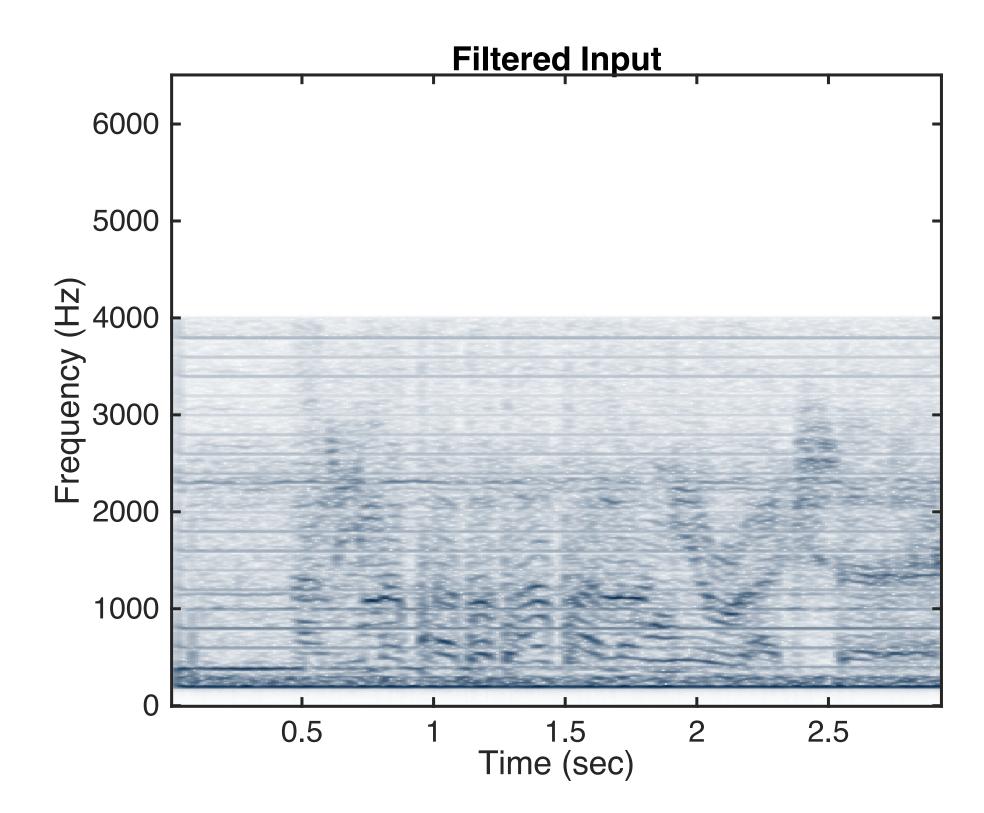


Result

Works pretty good (as expected)

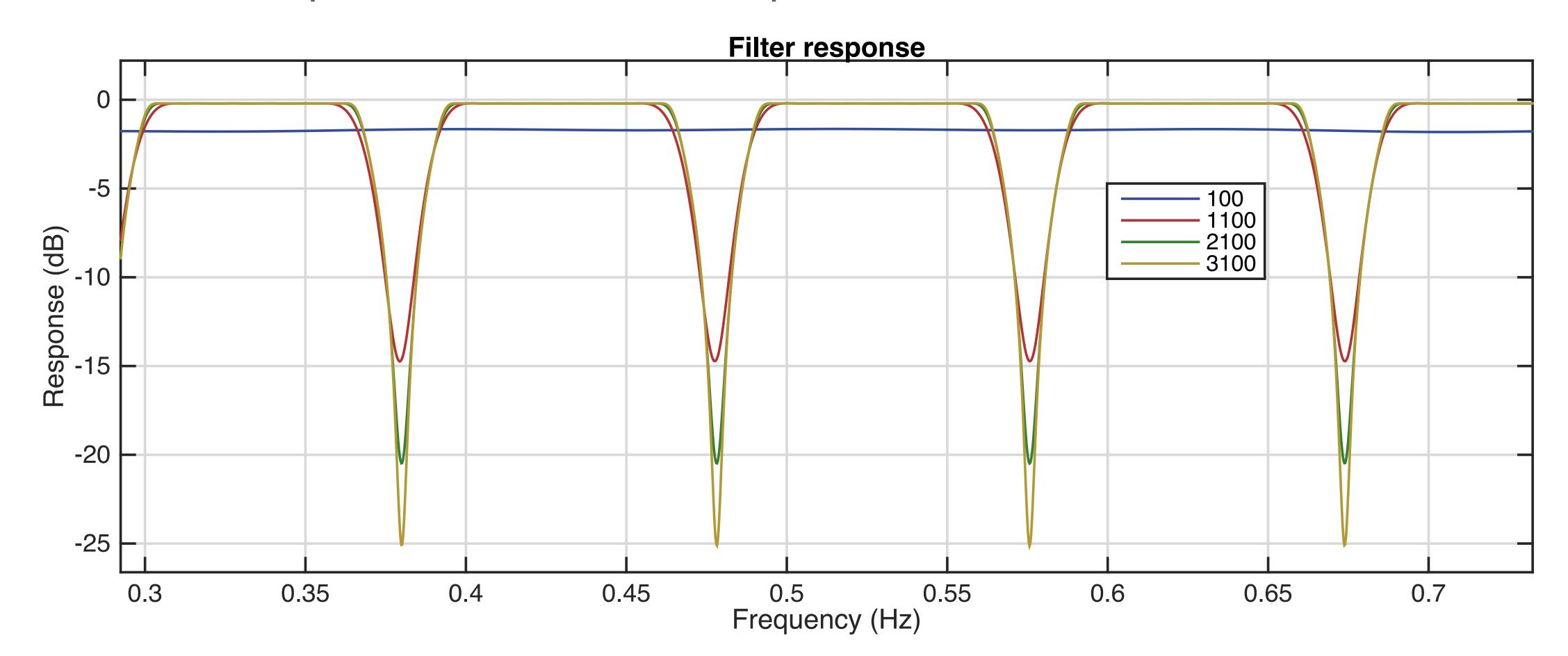
- Effectively the same thing as before
- But with just a single design step





And with more taps

- The longer the filter the better we're off
 - At the expense of more computation



Still too much work ...

- Finding all the peaks is tedious
 - What if they are changing?
- Is there a way to automate this?
 - Can we use an alternative approach to denoising?
 - Hint: you did in Lab 1

Editing the spectrogram directly

- What if we just zero the unwanted STFT bins?
- Process:
 - Take the magnitude and phase of the STFT transform

$$X_a[\omega,\tau] = ||X[\omega,\tau]||, \quad X_p[\omega,\tau] = \angle X[\omega,\tau]|$$

Zero the magnitudes of the unwanted noise

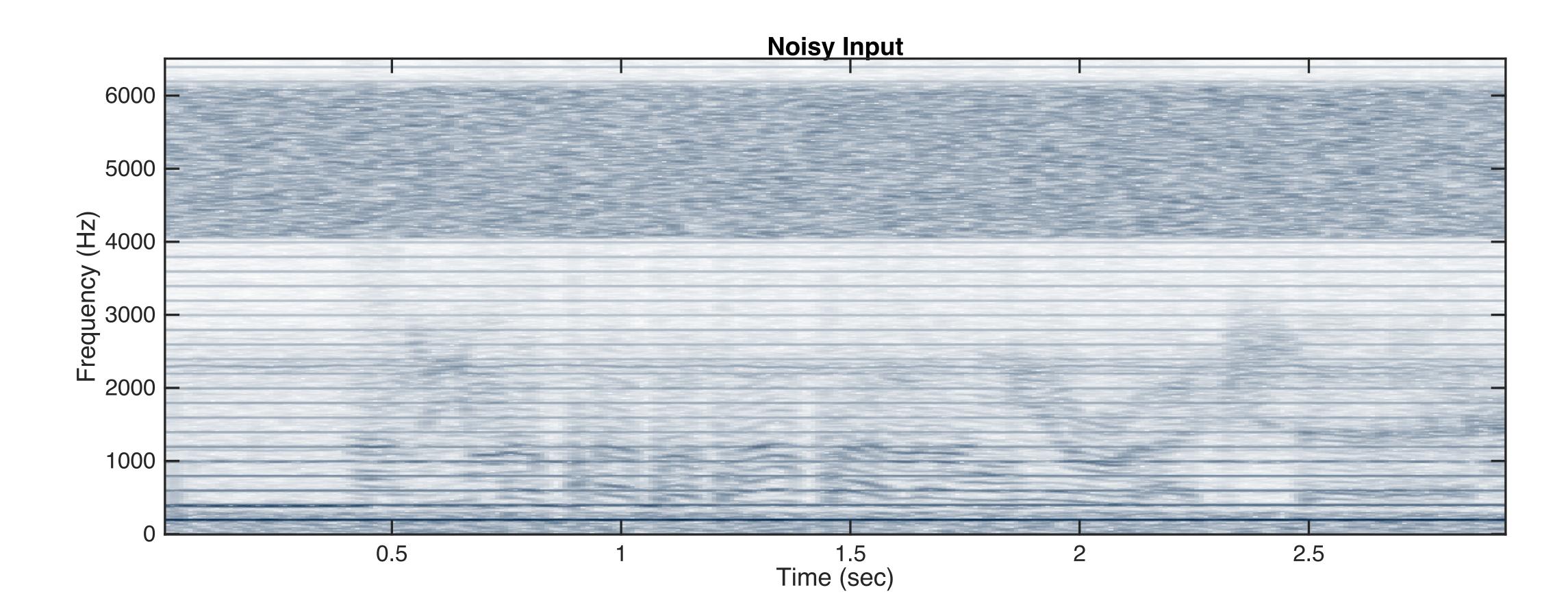
$$X_a[\omega_n, \tau] = 0, \quad \forall \omega_n \in noise$$

Resynthesize using the original phase

$$X[\omega,\tau] = X_a[\omega,\tau]e^{jX_p[\omega,\tau]}$$

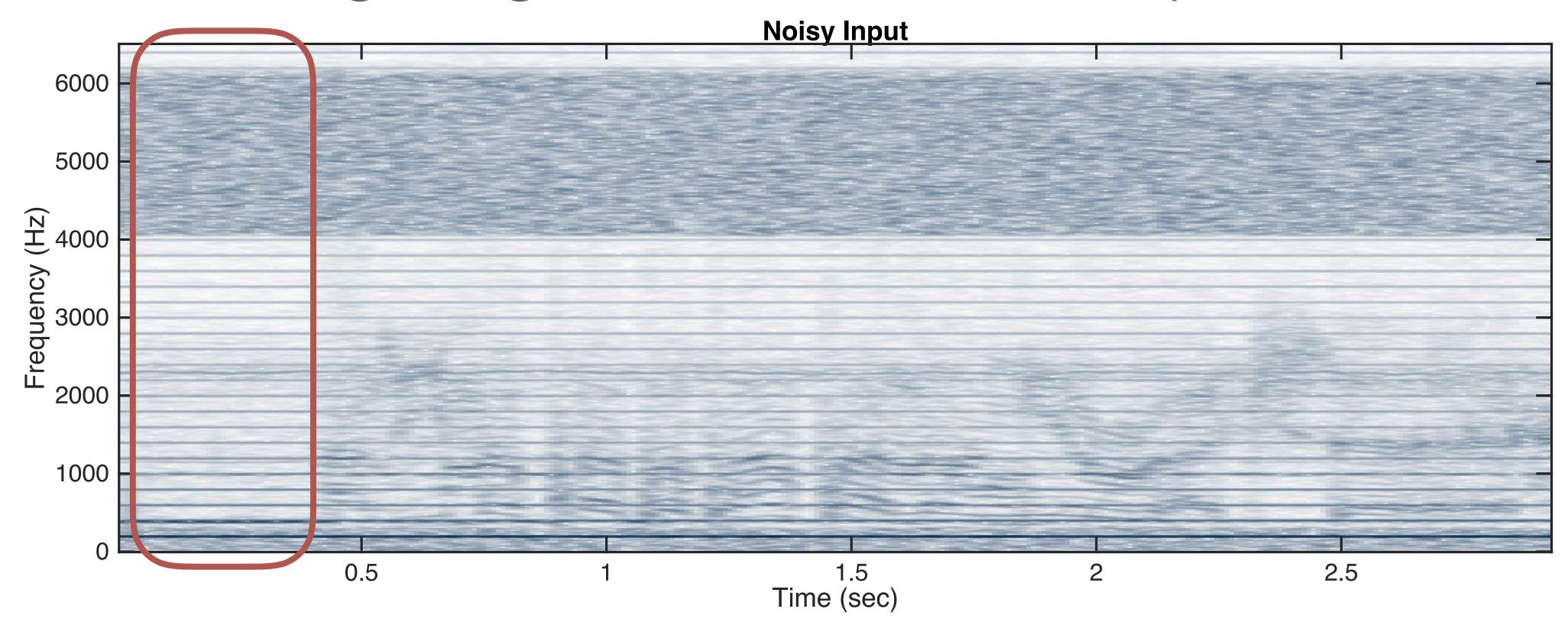
Where is the noise in the spectrogram?

- How do we find the noise frequencies?
 - And how do we remove them? (by hand?)



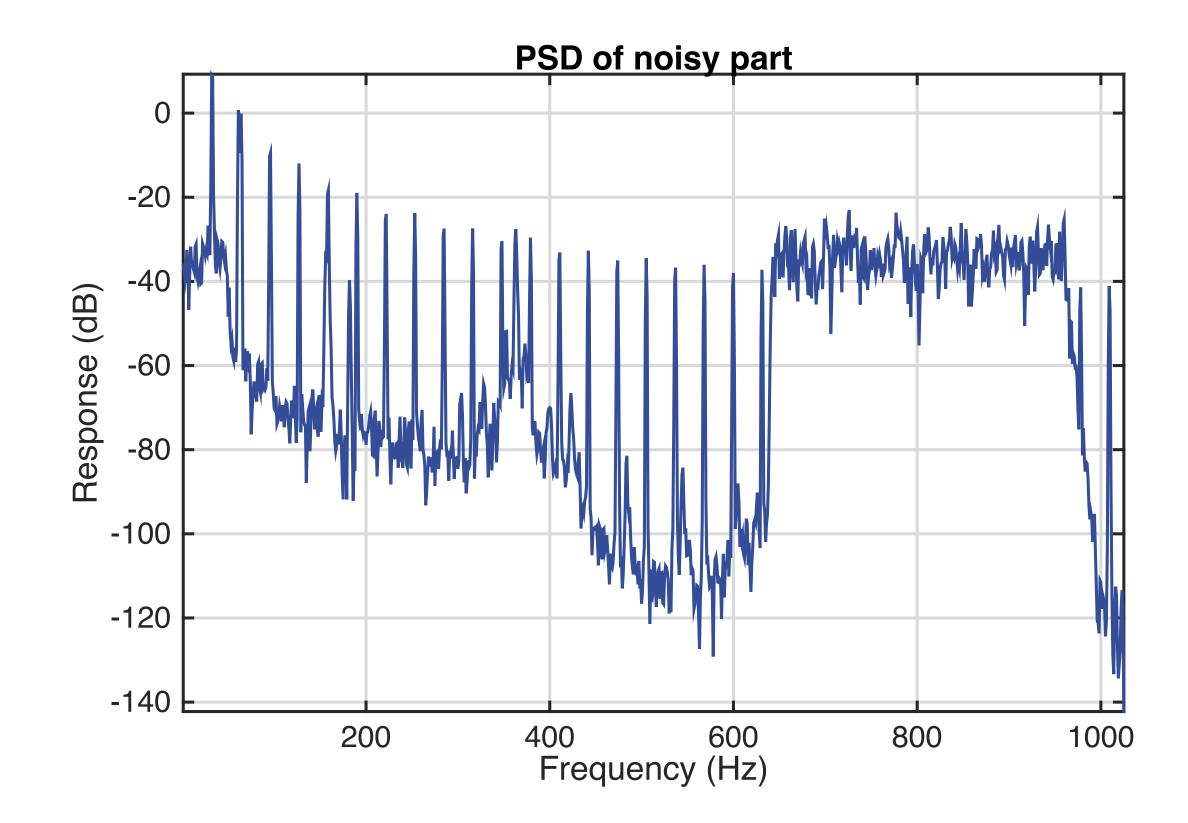
First take: Use an only-noise section

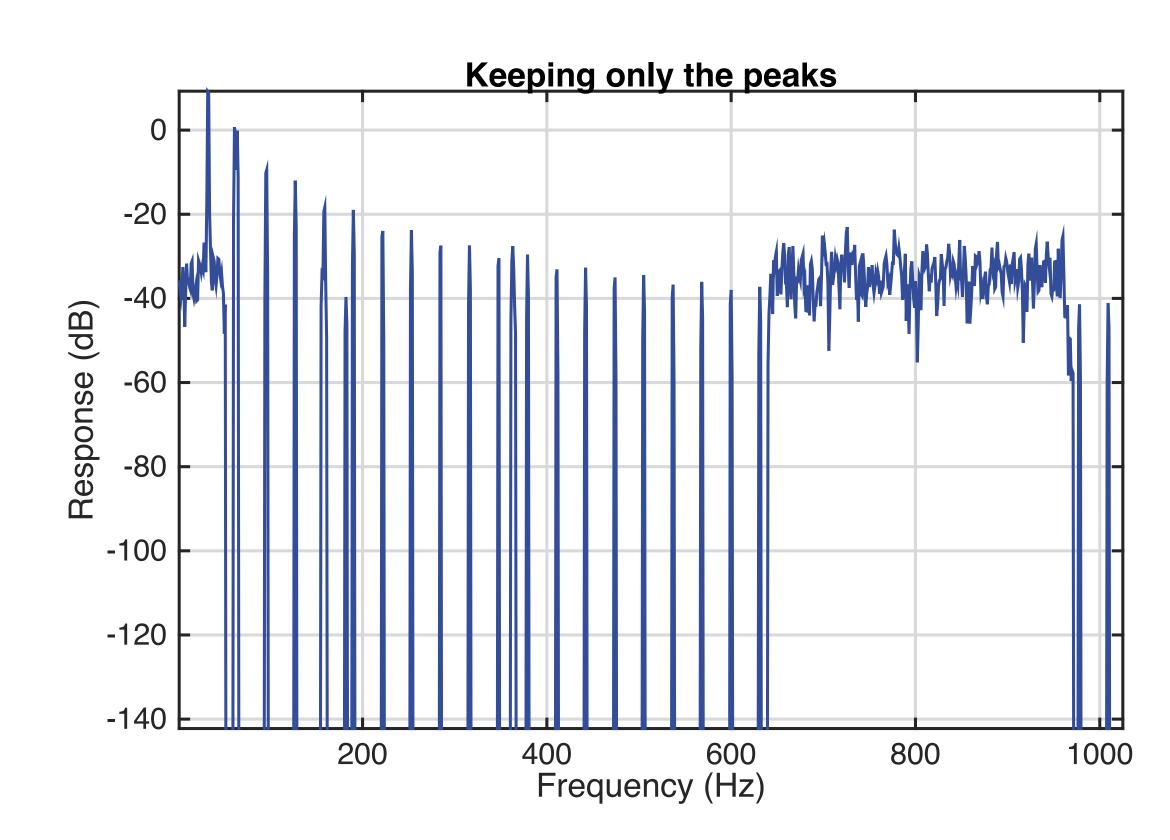
- There are sections in the recording which are noiseonly and can reveal the noise characteristics
 - Find their large magnitudes and assume they are the noise



Finding the noise pattern

- Get the local peaks
 - These are the frequencies where noise is dominant
 - And the frequencies we want to silence

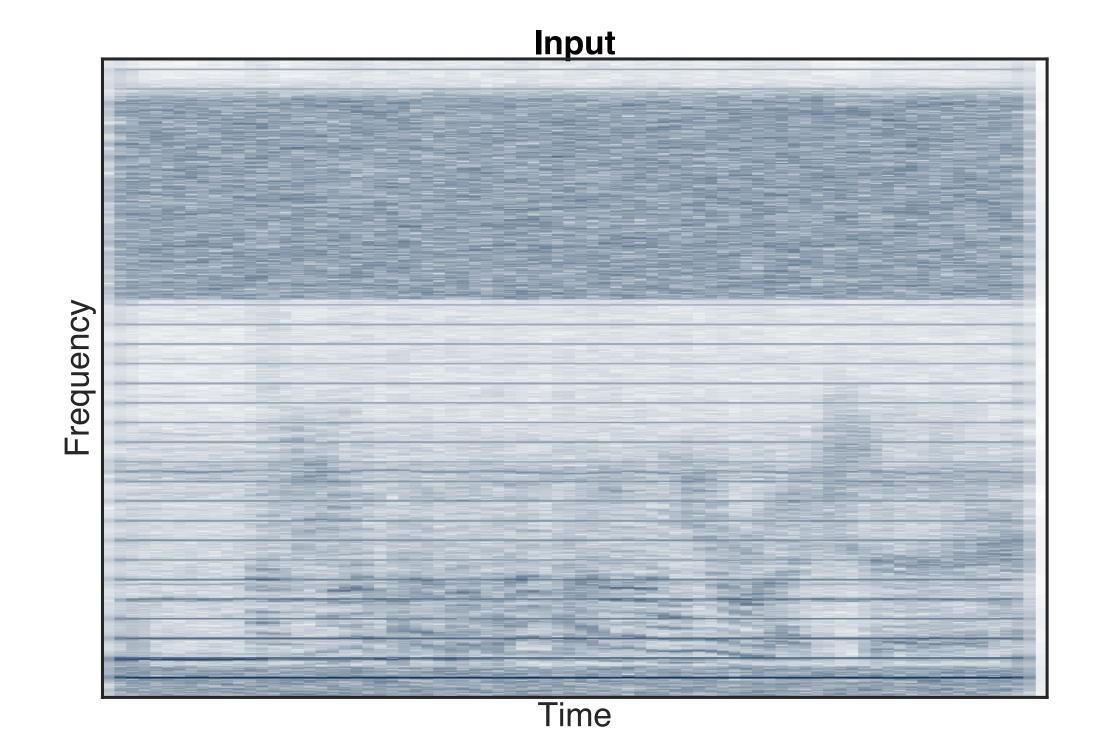


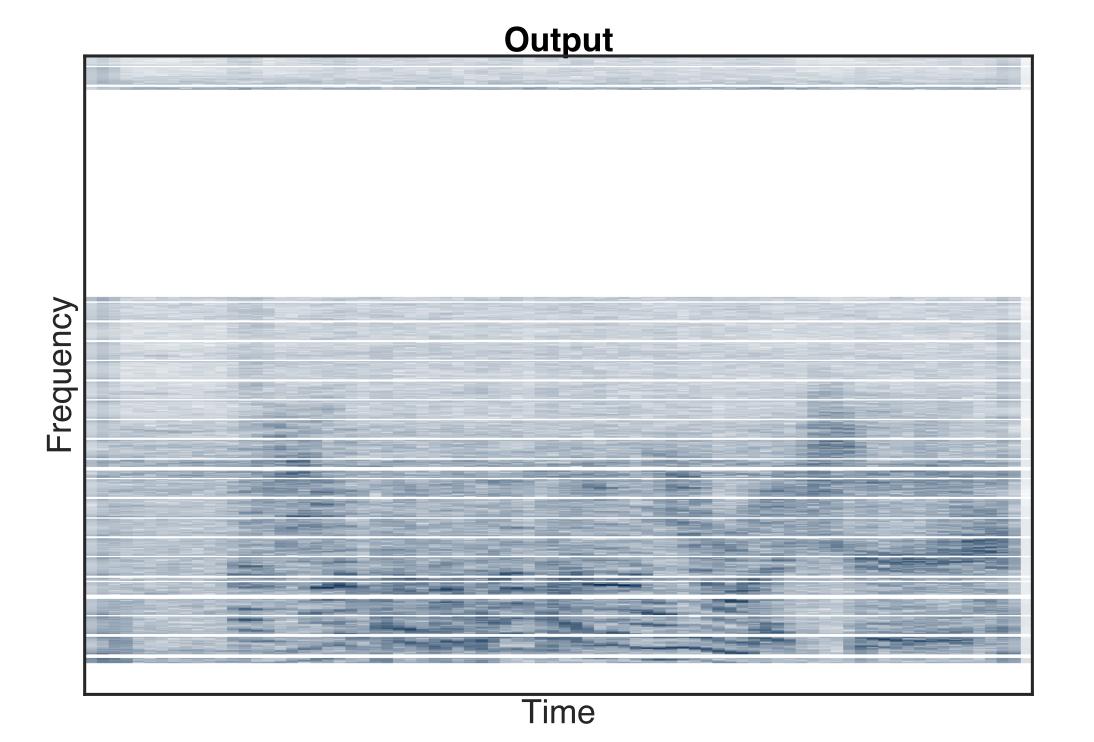


Result

More accurate denoising

- Noise is obliterated from spectrogram
 - Maybe a little too much?





A tunable approach

 Instead of setting unwanted components to zero, we can simply suppress them

- Advantages
 - We can select how much to remove them
 - We won't need to find the noise peaks
 - Simpler!

Spectral subtraction

Subtract noise spectrum from input:

$$Y_{t}[\omega] = \left(\left\| X_{t}[\omega] \right\| - \alpha \left\| N[\omega] \right\| \right) e^{j \angle X_{t}[\omega]}$$

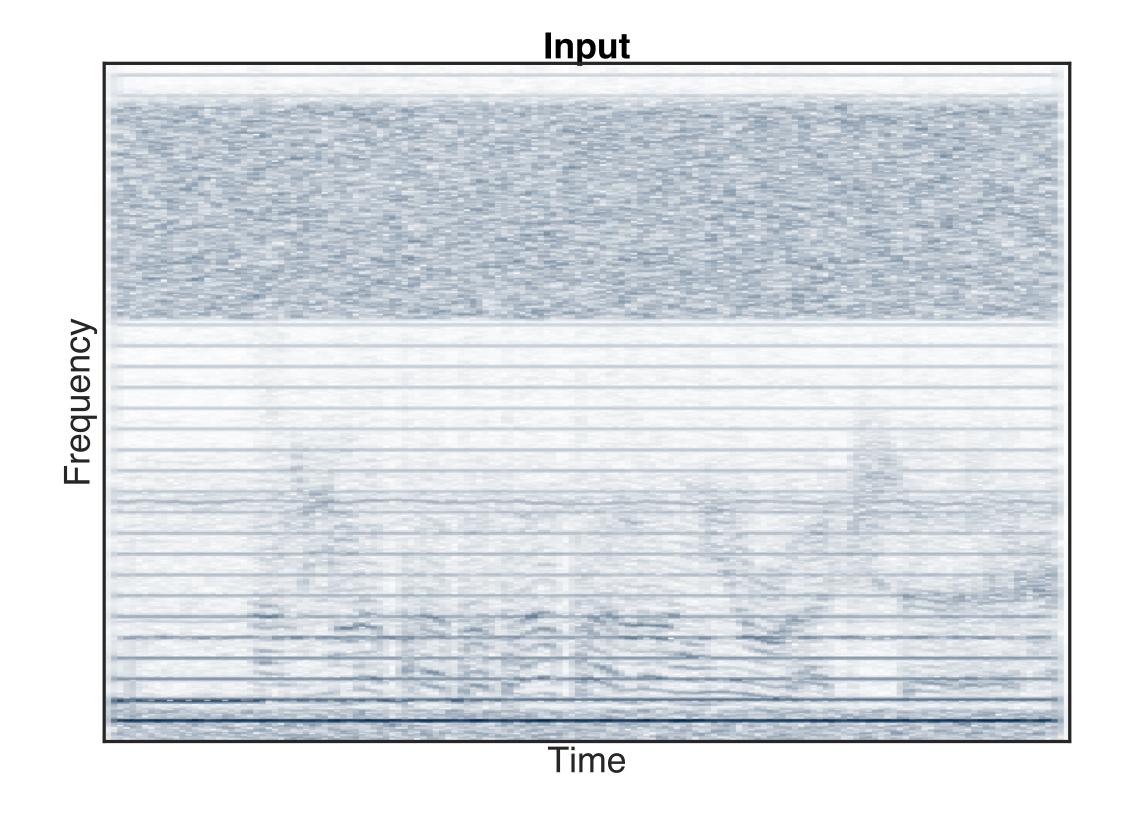
• The parameter a defines how much noise we want to remove

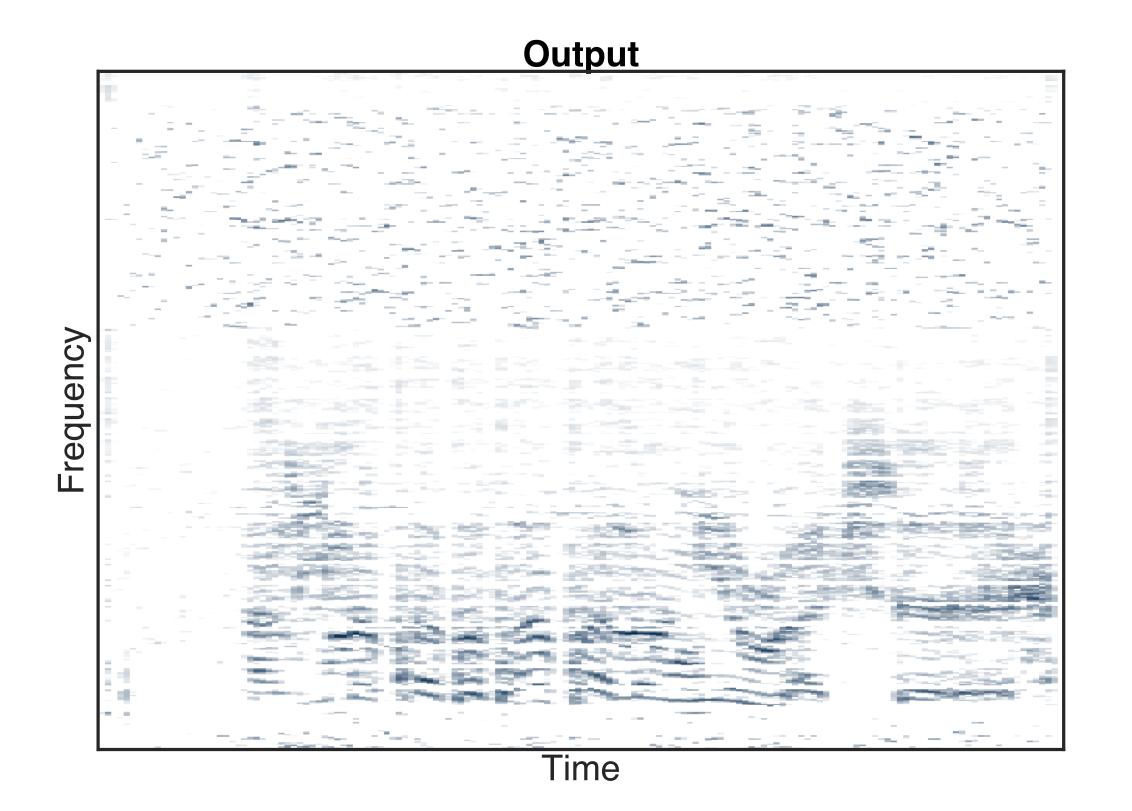
- What happens when the result is less than zero?
 - For now, we can set negative values to zero
 - Why? If we use negative values we won't mute these frequencies!

Example

Subtracting the noise spectrum removes noise!

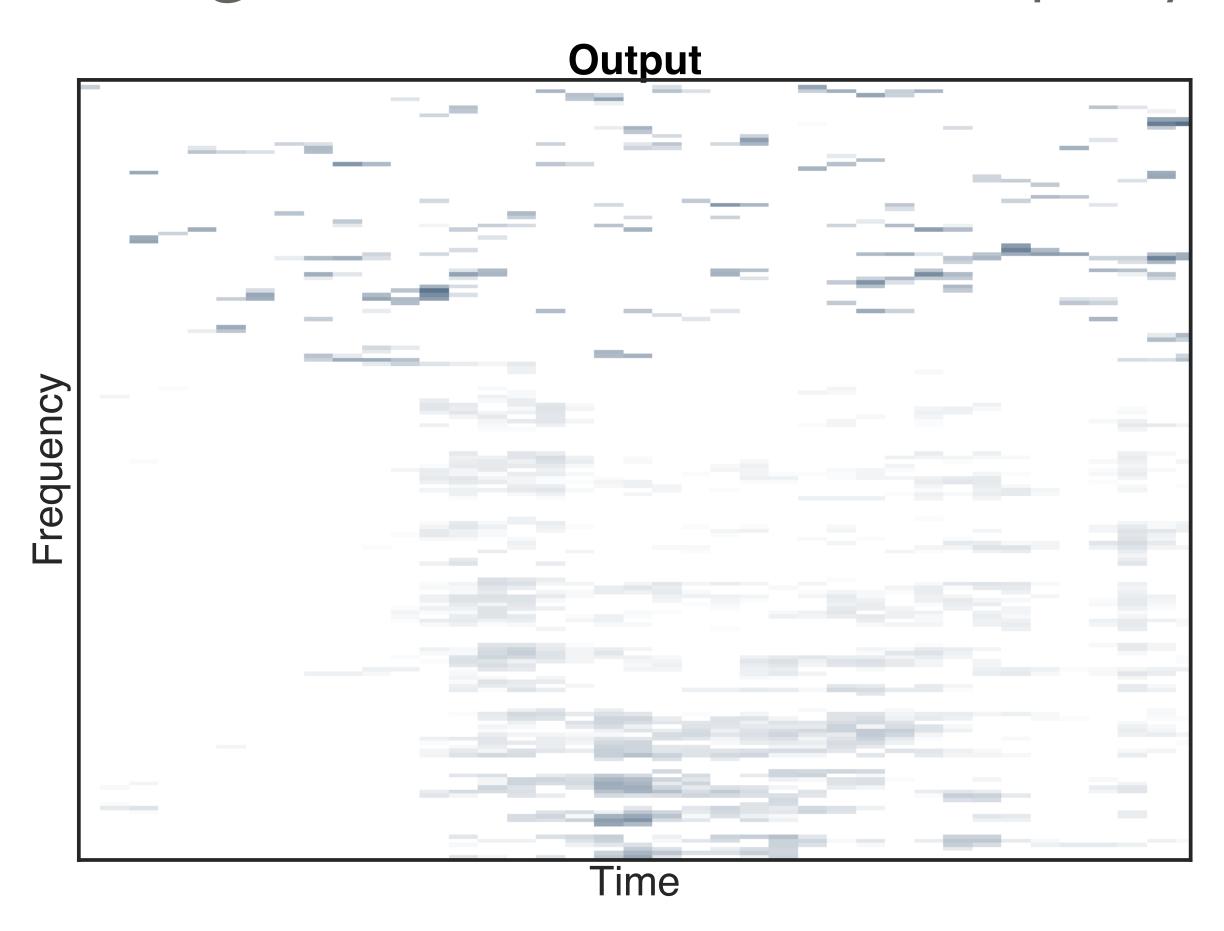
• But leaves some strange artifacts (can you explain them?)





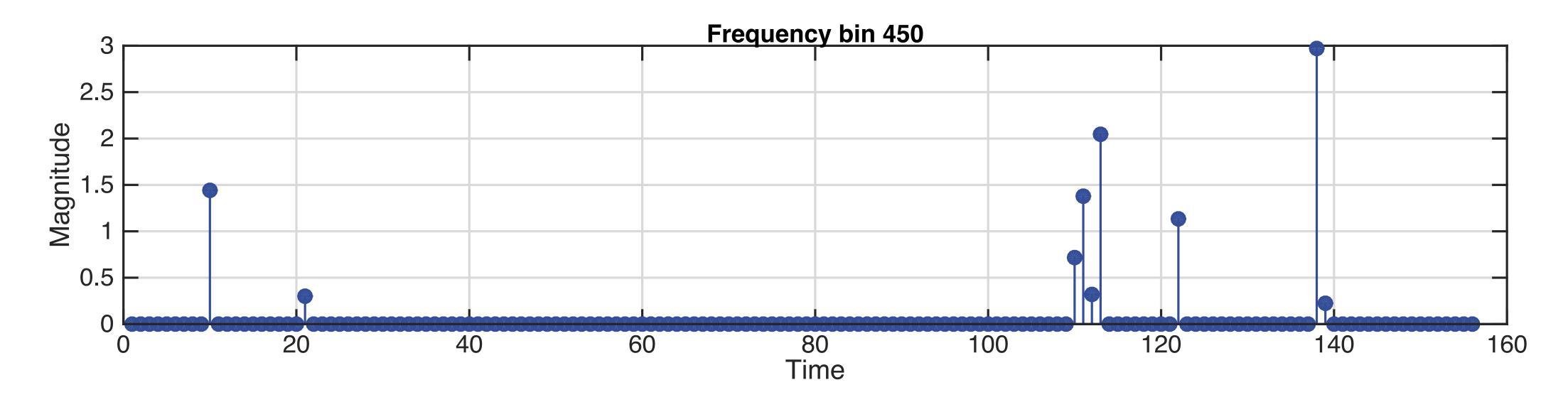
"Musical noise"

- The bleepy artifacts that remain
 - Frequencies that get turned off and on rapidly



Removing musical noise

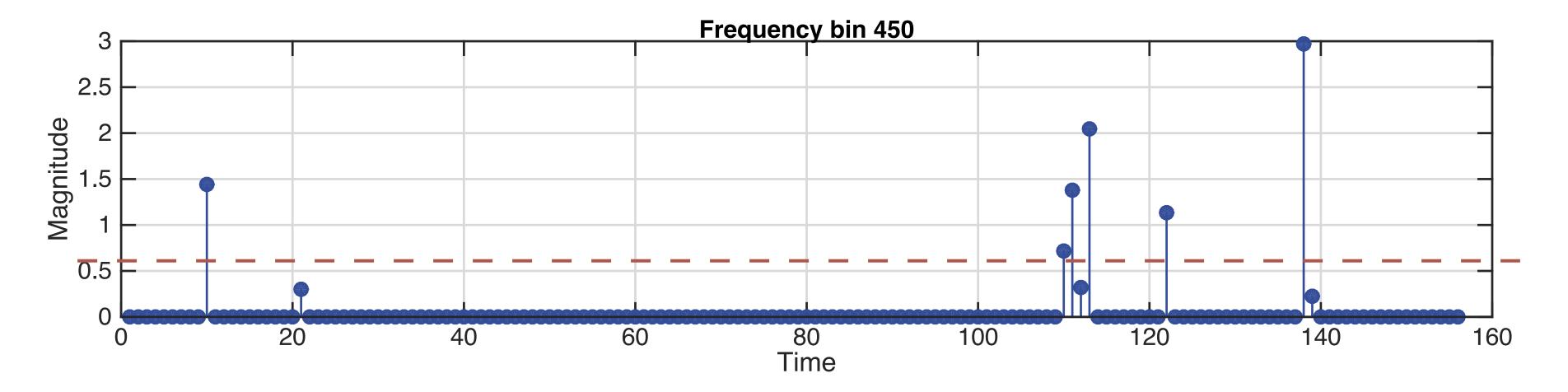
Looking at a single frequency band



- How do we minimize these ups and downs?
 - We can use some heuristics

Some simple rules

- To keep a coefficient
 - It must exceed a certain threshold
 - It must be part of a longer stretch of activity



But that's a little hacky

Median filtering

- A simpler approach
 - Median filtering

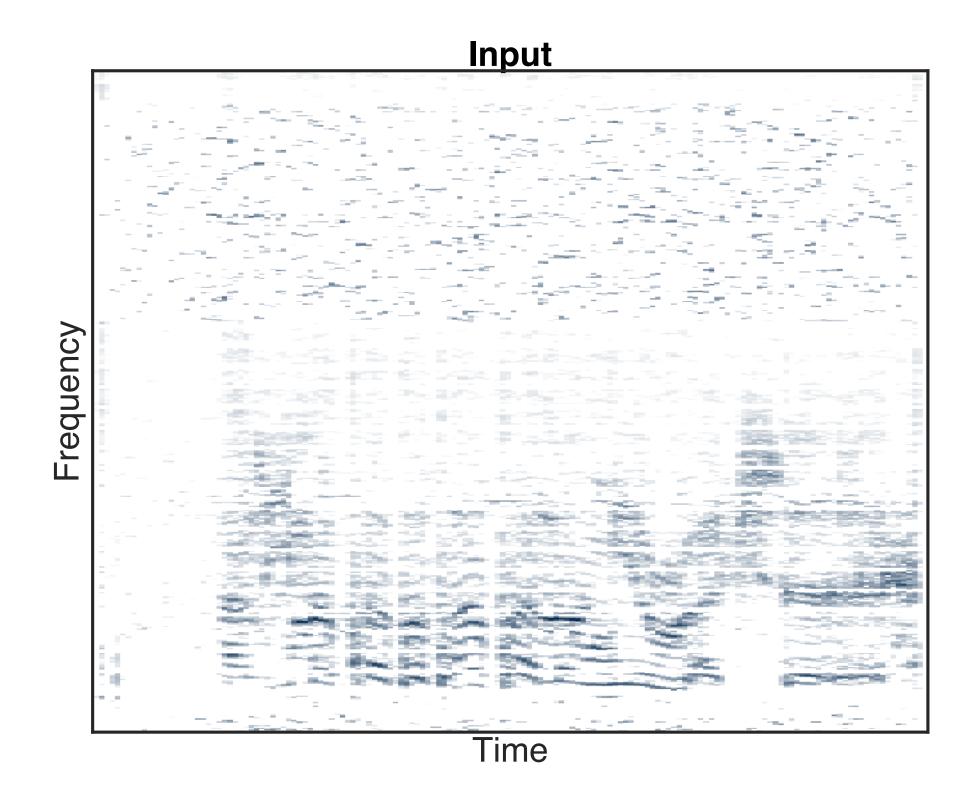
- Replace each STFT bin with a local median
 - Removes outlier points

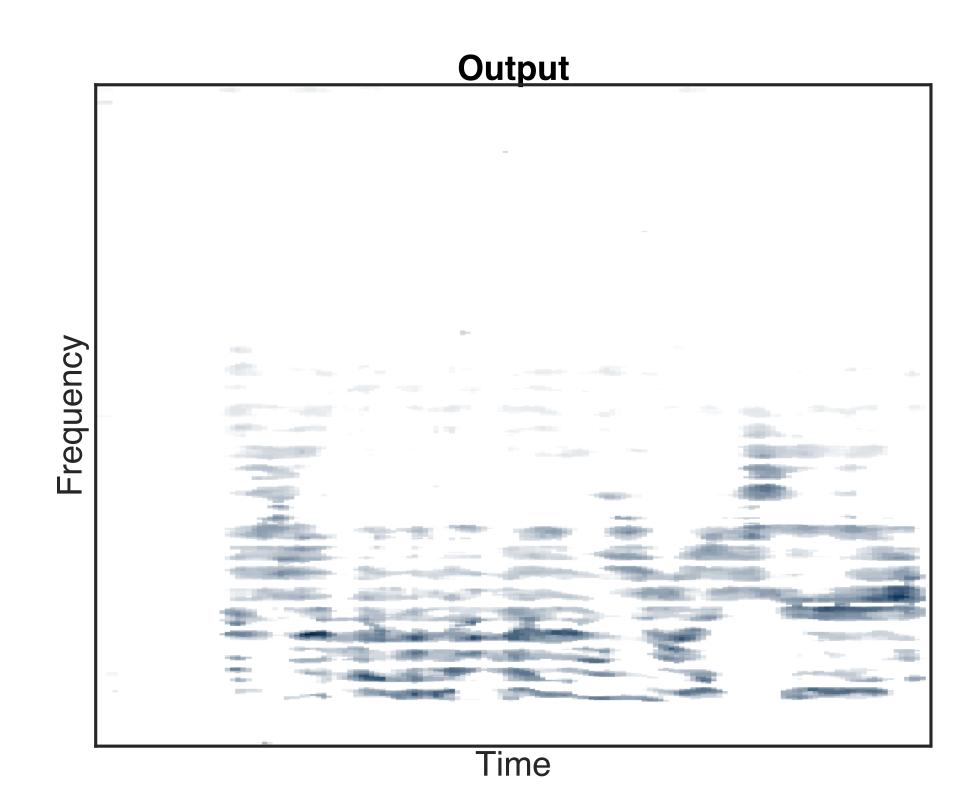
0	0	1/2		0	0	$\frac{1}{2}$
1	1	0	\longrightarrow	1	0	0
0	0	0		0	0	0

The result

 The speckles that form the musical noise can be significantly suppressed using this approach

• But we still alter the sound a bit





Power version

We can also subtract the spectral power

$$Y_{t}[\omega] = \sqrt{\left|\left|X_{t}[\omega]\right|^{2} - \alpha \left|\left|N[\omega]\right|^{2}\right|} e^{j \angle X_{t}[\omega]}$$

Or use a generalized form:

$$Y_{t}[\omega] = \sqrt{\left|\left|X_{t}[\omega]\right|^{p} - \alpha \left|\left|N[\omega]\right|^{p}\right|} e^{j \angle X_{t}[\omega]}$$

Spectral subtraction as a filter

We can express this process as a linear filter:

$$X_{t}[\omega] \approx S_{t}[\omega] + N[\omega]$$

$$Y_{t}[\omega] = G_{t}[\omega]X_{t}[\omega] = g(X_{t}[\omega], N[\omega])X_{t}[\omega]$$

• We can use a gain function, e.g.:

$$\begin{split} G_t[\omega] &= 1 - \frac{\|N[\omega]\|}{\|X_t[\omega]\|} \\ \Rightarrow Y_t[\omega] &= \left(1 - \frac{\|N[\omega]\|}{\|X_t[\omega]\|}\right) X_t[\omega] \end{split}$$

Some common gain functions

Magnitude subtraction

$$G_t[\omega] = 1 - \frac{\|N[\omega]\|}{\|X_t[\omega]\|}$$

Wiener filter

$$G_t[\omega] = 1 - \frac{\|N[\omega]\|^2}{\|X_t[\omega]\|^2}$$

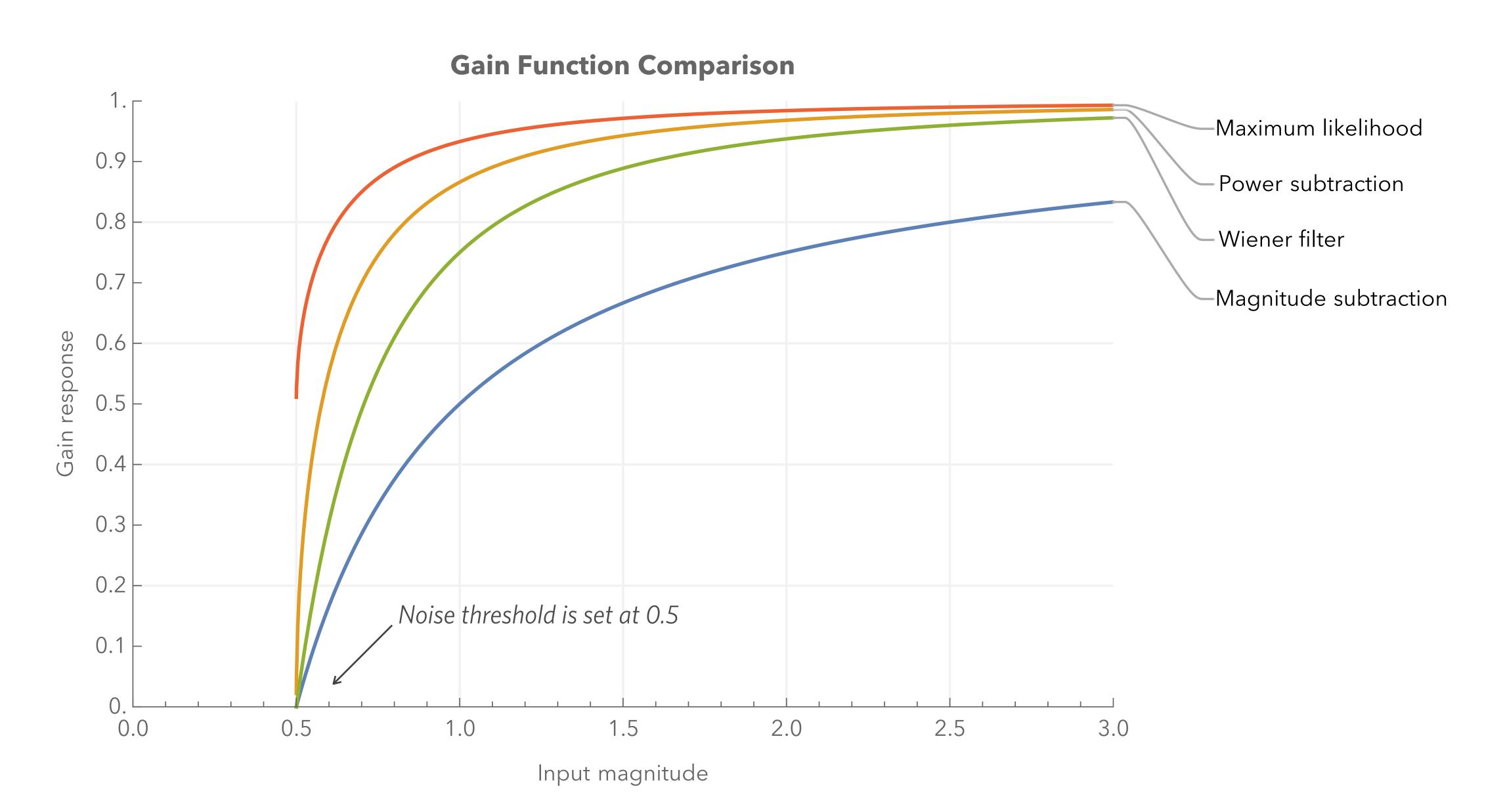
Power subtraction

$$G_{t}[\omega] = \sqrt{1 - \frac{\left\|N[\omega]\right\|^{2}}{\left\|X_{t}[\omega]\right\|^{2}}}$$

Maximum likelihood

$$G_{t}[\omega] = \frac{1}{2} \left[1 + \sqrt{1 - \frac{\left\|N[\omega]\right\|^{2}}{\left\|X_{t}[\omega]\right\|^{2}}} \right]$$

Comparing gain functions

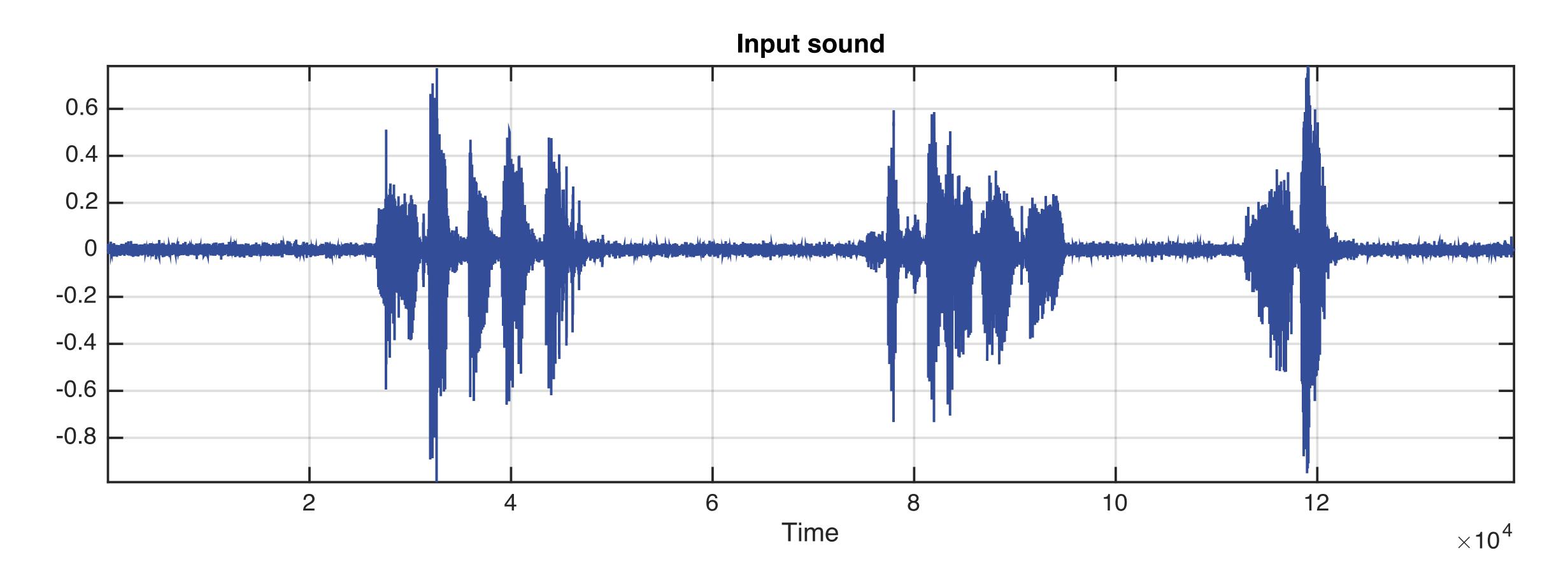


One lingering question

- How do we learn the noise profile?
 - How do we know where we have only noise?
- Not a trivial operation, hard to generalize
 - Two approaches:
 - Ask the user!
 - Use Voice Activity Detection (VAD)
 - (if you are denoising voice recordings)

Simple example

Where is the noise?



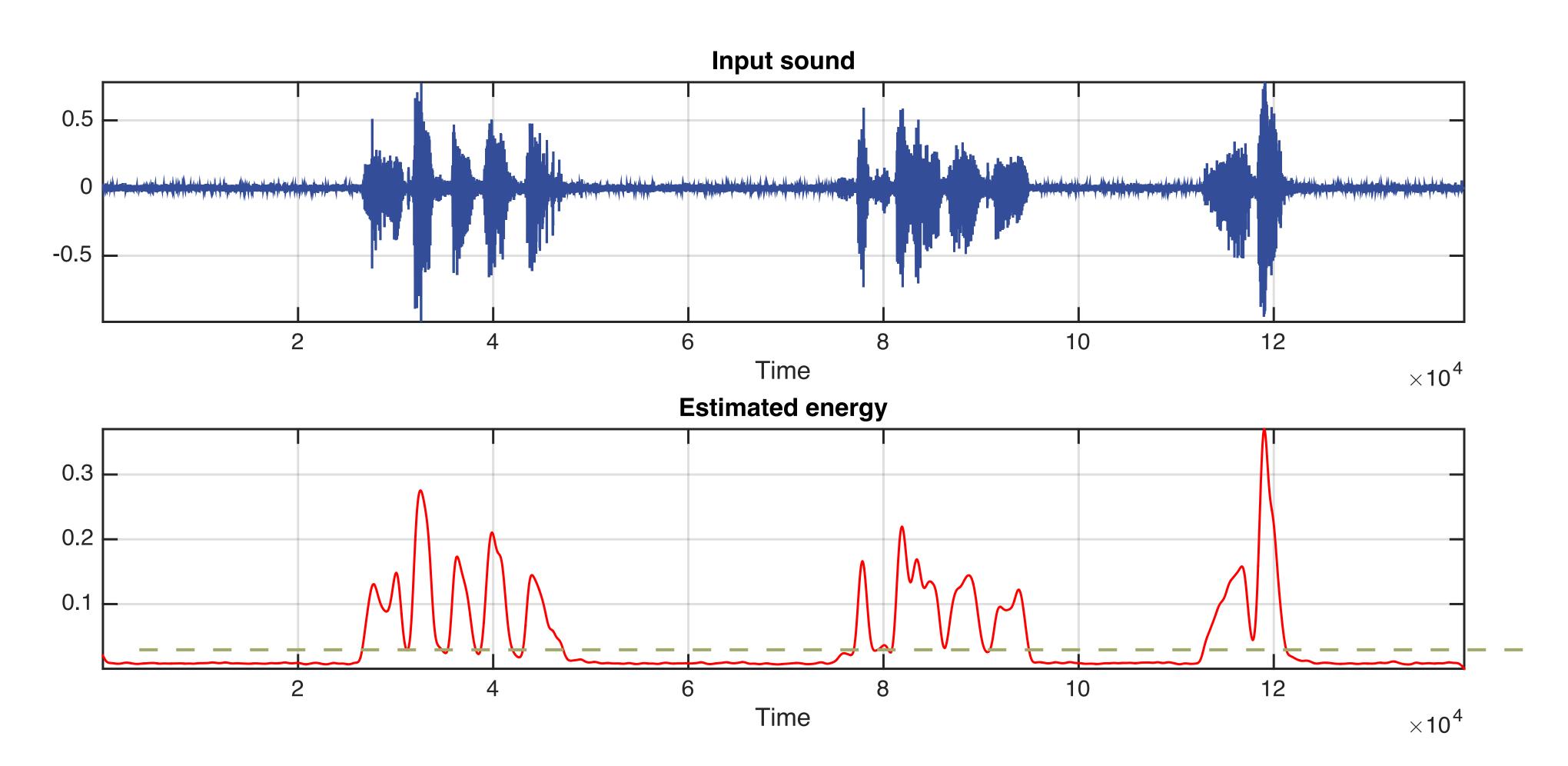
Voice Activity Detection

- Assume that speech is louder than background noise
 - Track only parts that contain high energy

- Simple approach
 - Rectify and lowpass filter the time domain signal
 - Results in a smooth energy contour

Example

Use a threshold to define speech activity regions



Or we can use more complex ways

- E.g. G.729 standard
 - Line Spectral Frequencies (LSFs)
 - Full band energy
 - Low band energy
 - Zero-crossing rate
 - Full and low band energy differences
 - •

Complex decision rule aggregating all of the above

Or we can use classifiers

- We can learn a speech model
 - Use training data to learn speech statistics
 - E.g. mean and covariance of speech spectra
- Classify each input frame according to model
 - If classified as non-speech then it's noise

More later in the semester

Denoising with VAD

- Two main advantages
 - We can learn a noise model
 - Update the noise spectrum when there's no speech
 - We can ignore the noise parts
 - When you don't detect speech, set output to zero

VADs are integral parts of speech technology

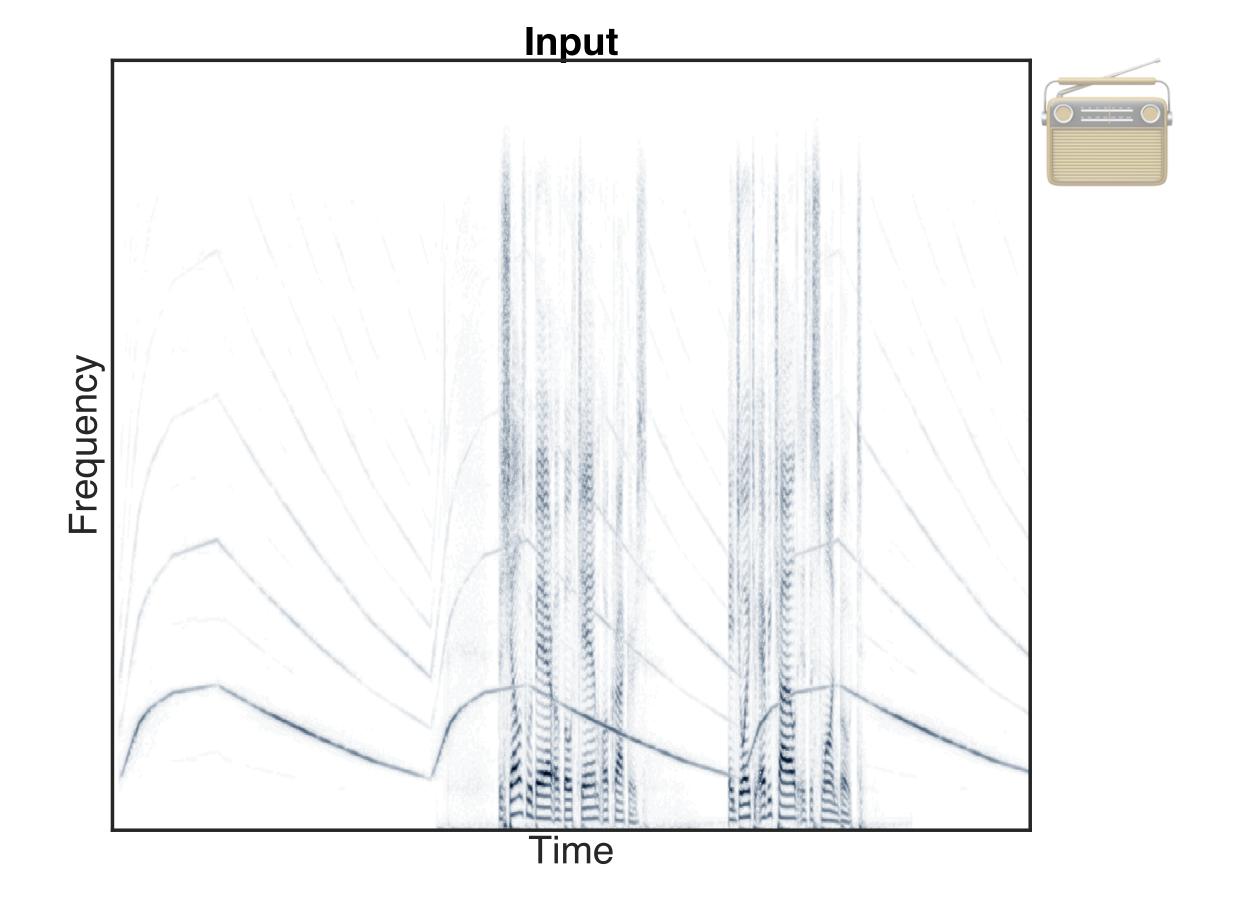
Stationary noise vs. not

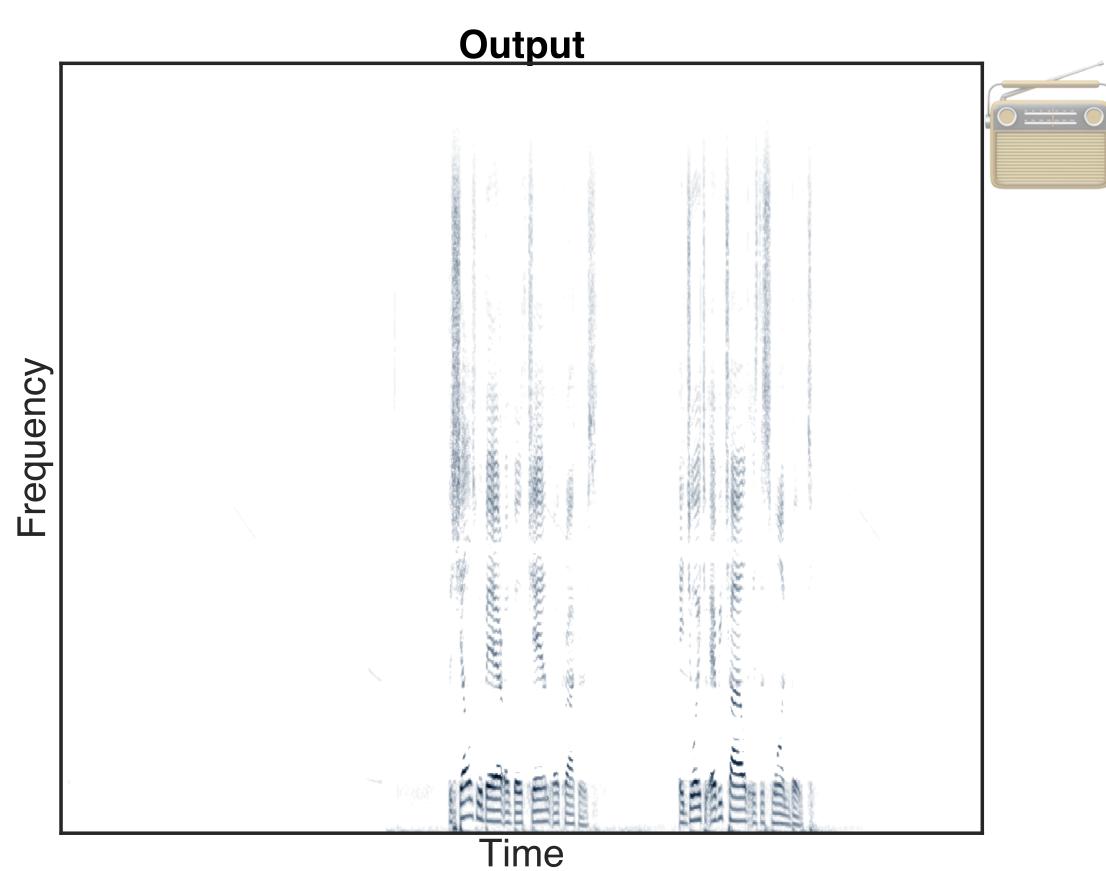
- What will happen if the noise keeps changing?
 - E.g. a siren?

- Noise model is not capable of tracking that
- Spectral subtraction is for stationary noise
 - When dealing with dynamic noises it will fail miserably

Example of non-stationary noise

- The noise sweeps all over a wide range
 - Denoiser gets to remove lots of speech





Multichannel methods

Classical array approaches

- Beamforming
 - Focus on speech directions (use localization)
 - Minimize energy of non-speech directions
 - We've already done this in Lab 3

Alternative approaches

- Use noise model from extra microphone
 - E.g. dual microphone cell-phones
 - Eliminate the need for a VAD

Dual microphone denoising

One mic picks mostly voice, the other mostly noise

$$\begin{split} V_t[\omega] &= S_t[\omega] + \alpha N_t[\omega], \quad 0 < \alpha < 1 \\ E_t[\omega] &= \beta S_t[\omega] + N_t[\omega], \quad 0 < \beta < 1 \end{split}$$

Denoised output:

$$Y_{t}[\omega] = \left(\left\| V_{t}[\omega] \right\| - \gamma \left\| E_{t}[\omega] \right\| \right) e^{j \angle V_{t}[\omega]}$$

When will this fail?

Measuring noise reduction

How do we evaluate denoising?

- Not straightforward
 - Noise reduction is subjective, and task-dependent

- Two takes on this:
 - Get a Mean Opinion Score (MOS) from listeners
 - Use standardized measures

Measuring noise reduction

• Standard metric: Signal to Noise Ratio (SNR)

$$SNR = 10 \log_{10} \frac{\left\| signal \right\|^2}{\left\| noise \right\|^2}$$

- One problem:
 - You need to know the clean signal
- Other metrics as well
 - SDR, SAR, ...

What about other noise types?

- Recording artifacts?
 - Vinyl scratches/cracks, tape hiss?

- Speech contaminated by background speech?
 - Or complex non-stationary noises?
- More on these later

Recap

Denoising with filters

- Spectral subtraction
 - Estimating noise profiles
 - Minimizing musical noise

Multichannel methods

Measuring denoising performance

Reading material

- Vaseghi's spectral subtraction book:
 - http://dsp-book.narod.ru/304.pdf

Next lab

- Denoising!
 - Implementing spectral subtraction